例1 求 f = 2 在0
主程序为wliti1.m:
f='2*exp(-x).*sin(x)';
fplot(f,[0,8]); %作图语句
[xmin,ymin]=fminbnd (f, 0,8)
f1='-2*exp(-x).*sin(x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果:
xmin = 3.9270 ymin = -0.0279
xmax = 0.7854 ymax = 0.6448
★(借助课件说明过程、作函数的图形)
例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?
设剪去的正方形的边长为x,则水槽的容积为: ,建立无约束优化模型为:min y=- , 0
先编写M文件fun0.m如下:
function f=fun0(x)
f=-(3-2*x).^2*x;
主程序为wliti2.m:
[x,fval]=fminbnd('fun0',0,1.5);
xmax=x
fmax=-fval
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.
★(借助课件说明过程、作函数的图形、并编制计算程序)
例3
1、编写M-文件 fun1.m:
function f = fun1 (x)
f = exp(x(1))*(4*x