堆的介绍
Heap是一种数据结构具有以下的特点:
1)完全二叉树
2)heap中存储的值是偏序
Min-heap: 父节点的值小于或等于子节点的值
Max-heap: 父节点的值大于或等于子节点的值

堆的存储
一般都用数组来表示堆,i结点的父结点下标就为(i–1)/2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

由于堆存储在下标从0开始计数的数组中,因此,在堆中给定下标为i的结点时:
(1)如果i=0,结点i是根结点,无父结点;否则结点i的父结点为结点(i-1)/2;
(2)如果2i+1>n-1,则结点i无左子女;否则结点i的左子女为结点2i+1;
(3)如果2i+2>n-1,则结点i无右子女;否则结点i的右子女为结点2i+2。
堆的操作:小根堆插入元素
插入一个元素:新元素被加入到heap的末尾,然后更新树以恢复堆的次序。
每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中。需要从下网上,与父节点的关键码进行比较,对调。

堆的操作:删除小根堆堆的最小元素
按定义,堆中每次都删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,堆的元素个数-1,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。
本文介绍了小根堆的原理和操作,包括插入元素、删除最小元素和创建堆的过程。通过C语言详细实现了小根堆的数据结构,包括插入、删除和输出等功能。
最低0.47元/天 解锁文章

2186

被折叠的 条评论
为什么被折叠?



