ETS 题库 c java,R - 使用预测的ets()值作为glm()模型中的预测变量

我目前在面板数据上运行三个模型 . 我有超过12个时期的378个客户 . 我使用我的响应变量的直接滞后 . 例如,时段t-1中的频率是时段t中频率的预测器:

购买< - glm(pur~freq.t-1 sales.t-1 more variables,family = binomial(link =“logit”),data = dat)frequency < - glm.nb(freq~freq.t-1 sales.t-1 more variables,data = dat.pur)sales < - glm(sales~frequency freq.t-1 sales.t-1 more variables,data = dat.pur)

如果预测购买== 1,我只估算频率和销售额 . 我使用频率的预测值作为销售预测器 .

我的数据中存在显着的序列相关性,这是预期的 . 我希望通过包含动态滞后结构来利用这一点 .

请参见下面的代码,它是客户57的频率向量 . 对于每个周期,我根据先前的频率观察预测频率t 1 .

我现在想在上面的模型中使用freq.ets(或freq.hw)作为预测器 . 这是允许我现在这样做的方式吗?

c.57$freq

for (i in 2:12) {

c.57$freq.ets[i]

c.57$freq.hw[i]

}

freq freq.ets freq.hw

1 2 NA NA

2 1 1.800000 1.000066

3 2 2.000000 1.999934

4 1 1.546773 1.546758

5 1 1.237072 1.237079

6 2 1.586379 1.586379

7 1 1.428557 1.401724

8 2 1.500029 1.589050

9 2 1.555596 1.682220

10 1 1.500029 1.539794

11 2 1.545460 1.640922

12 2 1.583327 1.705174

附:我知道可能有更好的方法来估计我的模型,而不是使用上面的结构和3个独立的模型(例如同步系统/随机效应模型),但我想从这个基本的设置和工作开始从那里 . 所以在这一刻我真的很感兴趣,如果包含这些滞后结构是正确的方法 .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值