signature=579985115b22f3f5475d04c95205b914,Gaunaurd, G.C., Brill, D., Huang, H., Moore, P.W.B. and S...

研究使用匹配追踪算法对在夏威夷卡内奥赫湾收集的一组海豚回声定位信号进行分解,以深入探究四种不同类型的回声定位信号的作用。方法将信号分解为最佳线性扩展的Gabor函数,从而分析海豚在执行识别任务时功能性带宽内的频率变化。结果表明海豚可能通过检查频率差异来区分目标,并通过ROC分析确定识别概率。这揭示了信号类别、信号调整在海豚目标识别和区分中的关键作用。
摘要由CSDN通过智能技术生成

JOURNAL NAME:

Open Journal of Acoustics,

Vol.6 No.1,

March

29,

2016

ABSTRACT: A set of dolphin echolocation signals previously collected from an Atlantic bottlenose dolphin in Kaneohe Bay, Hawai’i are decomposed using a matching pursuit algorithm to further investigate the role of four types of echolocation signals outlined elsewhere [1]. The method decomposes the echolocation signals into optimal linear expansions of waveforms, which are Gabor functions defined in a dictionary. The method allows for study of the changes in frequency content within a dolphin’s functional bandwidth during discrimination tasks. We investigate the role of the functional bandwidth in terms of the signal energy levels and echolocations task performance. Furthermore, ROC analysis is applied to the relative energies of the matched waveforms to determine probability of discrimination. The results suggest that dolphins may discriminate by inspection of the relevant frequency differences between targets. In addition, the results from the ROC analysis provides insight into the role of the different classes of dolphin signals and of the importance of modification of the outgoing echolocation clicks, which may be fundamental to a dolphin’s ability to identify and discriminate targets.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值