matlab概率论实验 分别掷硬币1,基于Matlab的概率论仿真实验

10f8cf94911f1019927eaa1ae57da0ae.png

5e0b2c3fe460c6f27939f9d79dc71b50.png

8591cfd1efa31617e24fdf00d7aa2612.png

3e8bf3693c5609e716901340c54ba6cf.png

a55959388386e812a8272a54ca2db3b8.png

e1322fdb626e5899a13a7c2fa62efc8a.png

cf396dfcb7968853b35a1083df7409f4.png

1bffe8fd9a2bc9b65f94352bc0070daf.png

f681e713a35978e2d5d22f7278544344.png

9223f456df5942460a6986134e3a53a4.png

2a586dc0bdc67a9157ae49123a855168.png

b9b8cc1327429dce1db47504c2c1f12c.png

a3778c415d2a74ac7b19b9a28592b5e4.png

4d988bfe0a15273a4b982f9c9f40cae6.png

e20cd4059f61dfa06be31782c6e734fc.png

52b8b23dfce7cf0e9b88369be72f0a6a.png

6c783c88ab74699ff8796299be54d866.png

32526c66fd54fa24d46dfcca00706aea.png

266f745dea1cf9bf4541bf15f095df0c.png

0e7a3e980e799e86bc35b61050d695f8.png

18a0c339e5986f51250b6760ed441e1f.png

c7bc63e8eb418f1a42f1b9628db79f89.png

669ffa8417ef426d27d06ea1f78a931b.png

d8608cfdb4d053512c5c75e960ce8712.png

d5db49dd6e33a5436d180981fd70ea04.png

41feac9fd03aad8f46878b5941e1f6ea.png

0405070403c61b76ee222f971ad2cf93.png

df68eb703609478a3285f98787e89216.png

8c7d1d465e3348a8d8c24c9dbd135093.png

f62d80a418c4a261ff3c31bb5f529851.png

0c065c145a269e2f37c69f05840b55ff.png

293238f0d3c1788136e94df45ac33ad0.png

2f82ee1e2400fdfd22a748ba8c535bb5.png

d0e28be7b0d14d0d9c7c86e55396a299.png

50039cbc8610c79fe72f2646cb5b971d.png

e1a50de8c8ce3c62ca422ebf7ec4eaae.png

e7c443dbbe2dc1ec06275cd72a86812d.png

9816df8df654f00833d1f728127229e6.png

7fc793d36b8d188cf3427697198ec46b.png

4f55f7df7ee6cee105a19f73965c9368.png

43ec6c4b8a59e1511fc6dc89ded562b6.png

6063980af93a470a9b5e6758d838d9a1.png

e775636cffe9d72261a625ed7be9d40a.png

25fccaaf475614e8b665d015d4003745.png

b6e531a023640c2a25da038a8df13722.png

9edf9542b871aa279271a3ff362827c6.png

75b0b0261d6dcd16269f29173ed266da.png

8395c7a0d4ecf4a5048e36a9aef8a51c.png

217534d30a97eb988c57ac11bc9e4375.png

0e5545c952180b0118e956133acc8443.png

d96842c38d3781cf4e3c6cd5ef5d53a8.png

d3975cd7d5e660d63367315ecd69b9e8.png

045a20ce786a564c6583334589baee80.png

f4e12326bb44646c3355be98a2c94962.png

f4423ab0804ebf1f858b2f9d1a712427.png

6cb2558f28fc1f0f7601db4e6e510159.png

4256524611d0e639ce49a203c8225b99.png

07decafb8f3ba0c712ec7b12eb5d01c7.png

259c7760e37a95fa32eca6f848e1e757.png

f969f7ac41f17eb0af75ea298075ae61.png

d40c610bb673547d059a3e5e373a743f.png

25f1792bb7158659febc4515f38bfec9.png

7829bc57e56deb35747cefa37de2e036.png

fc8cbc2933797e6db1c38c3bdba495cc.png

20d9cd0cde0817b77aa120b59302ecb8.png

68d9daa59d4d1773fa8720cceb7f5075.png

7e1ce9db2a73567b3fe8063e8f218fc0.png

04e8311d942da1fd7e13b812ce78d234.png

7c21122d45d6d9fa07396a09153d5433.png

f391efe7e301c14d73761730e300cf72.png

1cbf9335ebf5d0abb90d03e9525be8cb.png

fb1cf720134b44b26166a33cddfa5577.png

645600c036f91bed041af6d1e5e49eda.png

fa6ef672105a0bb5e890fbce7c234a23.png

113c45e138e4bd53b9841480538414ea.png

155cc45d7c1548a2bd88070bc05e2879.png

c54a4e38786577c3b9a8b48c5bbf0adb.png

b3f717131d1c104e1070b2a0ea47a5d8.png

310a15084c4e51101b553a51d155bc5c.png

4109b24ded5397f730568cee8ddf40da.png

a1633d66a52f43f0cda02b91fcdf1395.png

c29b43520625dd81a1f803d8638b3099.png

e2a60d1216d1a6fb91ea1ccc9643d089.png

65e789f7e5053be8dbfa10b955768ba5.png

affda485e9839765a7e6785e639b89d1.png

c7176ee2d3be235e758f4dc5531f28cf.png

7c9692f1dcda73d84fd8e69bfdb8bd8f.png

ff47712c1ff5f285d18188aa6c24cea5.png

df6d9622300b8a9877d7e0cb879719cb.png

d69d2b8bdcbbd0ce74b71ca8c28bbd74.png

b52d03ddce69ee2b3451bfddf8ed8973.png

9a26525f550f9f4b4472f4262ab01034.png

0faa69aaf9117c7d0e4e94a7c80de65f.png

e09adb4ca9d8be6443365ddc6b88ad76.png

ec868149186f122f4d11d2ea6d3c5042.png

e285069a1f93e20a71f24a0a690e58be.png

cf2397b84e00fe0230e441b6920a2fa9.png

5594c0ebf66c69e187fdb0185ed858bb.png

596ec06bbd0d982f9900af2da85a326f.png

0a7c25784e8d3d9c43c5d9e04e6e46ac.png

33c6da089bbd3e91e64d675c9bac2ad5.png

a25db72af18bc20d71c744465f45d451.png

afed8ddb2cba2a939377aa56ade4e546.png

8fdad73bcf2814f3202095301fbdad6a.png

18320bc0e022d835f664e706d8ccda5e.png

07a81c556b8a4a75d86e2de42a283f8d.png

888e629465ef2e3d8483ec5d3ed7417d.png

712d0a82566e83a201947ab2d52f1e05.png

4d9f9e84fa2b5b0ae57b81cc35ea823b.png

dbf9d21064ad16d91803c2fa57ac5e02.png

-61-

基于Matlab 的概率论仿真实验

可以看到,当z 在区间度是线性减函数,仿真结果与之吻合很好。再考虑一个离散的例子:抛掷两个均匀的骰子,考虑最小点数的分布。在等可能的点。

采用Matlab 做概率统计实验仿真,可以观察相互独立同分布的随机变量序列部分和的变化趋势,也可以观察二项分布中参数n 增大时的变化趋势。引导学生参与进来,一起编写、运行程序,最后观察结果,等同于让学生重新发现定理。经过这样一个过程,学生对理论的理解就深刻地多,运用起来也就熟练地多。

以p=0.7 ,n 分别取10、40、70为例,在同一图形窗口中显示二项分布分布律与相应正态分布概率密度曲线,如图5,程序如下:

%棣莫弗-拉普拉斯中心极限定理仿真p = 0.7;m=[];for n = 10:30:70

pf = pdf('bino',0:n,n,p);[4] plot(0:n,pf,'*'),hold on

pfn = pdf('norm',0:n,n*p,sqrt(n*p*(1 - p)));

plot(0:n,pfn,'r')

m=[m,mean(abs(pf-pfn))];end %end

仿真结果表明:二项分布会随着n 的增加,逐渐近似为正态分布,这种近似误差的绝对值的平均值有越来越小的趋势,这点从程序中m 各分量的变化趋势可以看出。而且,通过仿真实验,可以很容易得到二项分布近似成正态分布时的参数对应关系。至于列维-林德伯格中心极限定理的仿真,本文不再赘述,有兴趣的读者可以自己编写仿真程序。

3、结论

Matlab 做概率论仿真实验具有很大的优势,利用Matlab 可以写出简洁实用的仿真程序,实验结果可以通过Matlab 直观地可视化表现出来,抽象的结论通过Matlab 仿真更容易理解。仿真实验可以在教师课堂教学中增加教学效果,也可以让学生自学概率论时帮助理解内容。

参考文献

[1]茆诗松主编.统计手册[M].科学出版社,2003:1008-1014

[2]黎玉芳.中心极限定理的教学方法探讨.中国科技信息[J],2010(24),220-221[3]许芳中等.大数定律及中心极限定理的教学课程设计探讨.科技资讯[J],2010(36),227

图4

DOI :10.3969/j.issn.1001-8972.2011.22.022

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值