signature=fedb52cdaa1a8c0f80b11375a0fa940b,Implementation of a Neural Network-based In-Vehicle Engin...

摘要:

Arti cial neural networks (ANNs) are a powerful processing units inspired by the human brain. They can be used in many applications due to their pattern classi cationabilities, ability to model complex nonlinear input-output mappings, and their abilityto adapt and learn.The relatively new Smooth Variable Structure Filter (SVSF) has recently beenapplied to the training of feedforward multilayered neural networks. It has shown tohave good accuracy and a fast speed of convergence.In this thesis, an engine fault detection system using an ANN will be implemented.ANNs are used in engine fault detection due to the high-noise environment that engineoperate in. Additionally the fault detection system must work while the engine ismounted in a vehicle, which provide additional sources of noise.The SVSF training method is evaluated and compared to other traditional trainingmethods. Also di erent accelerometer types are compared to evaluate whether lowercost accelerometers can be used to keep the system cost down.The system is tested by inducing a missing spark fault, a fault that has a complexfault signature and is di cult to detect, especially in an engine with a high numberof cylinders.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值