摘要:
Arti cial neural networks (ANNs) are a powerful processing units inspired by the human brain. They can be used in many applications due to their pattern classi cationabilities, ability to model complex nonlinear input-output mappings, and their abilityto adapt and learn.The relatively new Smooth Variable Structure Filter (SVSF) has recently beenapplied to the training of feedforward multilayered neural networks. It has shown tohave good accuracy and a fast speed of convergence.In this thesis, an engine fault detection system using an ANN will be implemented.ANNs are used in engine fault detection due to the high-noise environment that engineoperate in. Additionally the fault detection system must work while the engine ismounted in a vehicle, which provide additional sources of noise.The SVSF training method is evaluated and compared to other traditional trainingmethods. Also di erent accelerometer types are compared to evaluate whether lowercost accelerometers can be used to keep the system cost down.The system is tested by inducing a missing spark fault, a fault that has a complexfault signature and is di cult to detect, especially in an engine with a high numberof cylinders.
展开