高一到高三计算机笔记,高中数学笔记总结【高一至高三,很全】(108页)-原创力文档...

高中数学知识点

高中数学第一章 -集合

§01. 集合与简易逻辑知识要点

一、知识结构:

本 章 知 识 主 要 分为集 合 、简单不 等 式 的 解 法 ( 集 合 化简)、简易逻辑三 部 分 :

二、知识回顾:

(一) 集合

1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用 .

2. 集合的表示法:列举法、描述法、图形表示法 .

集合元素的特征:确定性、互异性、无序性 .

集合的性质:

①任何一个集合是它本身的子集,记为 A A;

②空集是任何集合的子集,记为 A;

③空集是任何非空集合的真子集;

如果 A B ,同时B A,那么 A = B.

如果 A B,B C,那么 A C .

[注]:① Z= {整数 }(√) Z ={全体整数 } ( 3)

②已知集合 S 中 A 的补集是一个有限集,则集合 A 也是有限集 .(3) (例: S=N; A=N ,则

CsA= {0})

③ 空集的补集是全集 .

④若集合 A=集合 B,则 CBA= ,CAB = CS(CAB)=D (注:CAB = ).

3. ①{(x,y)| xy =0,x∈R,y∈R}坐标轴上的点集 .

②{(x,y)| xy<0,x∈R, y∈R 二、四象限的点集 .

③{(x,y)| xy>0,x∈R, y∈R} 一、三象限的点集 .

[注]:①对方程组解的集合应是点集 .

- 1 -

例:

x

2x

y

3

3

y 1

解的集合 {(2,1)}.

2+1} 则 A∩B = ) ②点集与数集的交集是 . (例: A ={(x,y)| y =x+1} B={y| y =x

n 个. ②n 个元素的真子集有 2n -1 个. ③n 个元素的非空真子集

4. ①n 个元素的子集有 2

有 2

n-2 个.

5. ?①一个命题的否命题为真,它的逆命题一定为真 . 否命题 逆命题 .

②一个命题为真,则它的逆否命题一定为真 . 原命题 逆否命题 .

例:①若 a b 5,则a 2或b 3应是真命题 .

解:逆否: a = 2 且 b = 3,则 a+b = 5,成立,所以此命题为真 .

② x 1且y 2, x y 3.

解:逆否: x + y =3 x = 1 或 y = 2.

x 1且y 2 x y 3,故 x y 3是x 1且y 2 的既不是充分,又不是必要条件 .

?小范围推出大范围;大范围推不出小范围 .

3. 例:若 x 5, x 5或x 2 .

4. 集合运算:交、并、补 .

交:A B x x A 且x B

{ | , }

并:A B { x| x A或x B}

补:C A { x U ,且x A}

U

5. 主要性质和运算律

(1) 包含关系:

C

A A, A, A U , A U ,

U

A B, B C A C; A B A, A B B; A B A, A B B.

(2) 等价关系:

A B A B A A B B C A B U

U

( 二) 含绝对值不等式、一元二次不等式的解法及延伸

1. 整式不等式的解法

根轴法 (零点分段法) 从右向左,从上向下,奇穿偶回,零点讨论

①将不等式化为 a0(x-x 1)(x-x 2) , (x-x m)>0(<0) 形式,并将各因式 x 的系数化“ +”;( 为

了统一方便 )

②求根,并在数轴上表示出来;

③由右上方穿线,经过数轴上表示各根的点(为什么?) ;

④若不等式( x 的系数化“ +”后)是“ >0”, 则找“线”在 x 轴上方的区间;若不等式

是“<0”, 则找“线”在 x 轴下方的区间 .

x

1 x2 x

3

x

m-3

-

+ +

x

m-2 xm-1 xm x

-

(自右向左正负相间)

n n 1 n 2

则不等式 0( 0)( 0 0)

a0 x a x a x an a

1 2

的解可以根据各区间的符号确

定.

- 2 -

特例① 一元一次不等式 ax>b 解的讨论;

②一元二次不等式 ax

2+box>0(a>0) 解的讨论.

0 0 0

二次函数

y

2

ax

bx

c

( a 0 )的图

一元二次方程

有两相异实根 有两相等实根

2

ax

a

bx

c

0

的根

0

x1, x x x

(

2 1 2

)

b

x1 x 无实根

2

2a

2

ax

(a

bx c

0)的解集

0

x x x1或x x

2

x x

b

2a R

2

ax

(a

bx c

0)的解集

0

x

x1 x x

2

2. 分式不等式的解法

(1)标准化:移项通分化为

f

g

(

(

x)

x)

>0( 或

f

g

(

(

x)

x)

<0) ;

f

g

(

(

x)

x)

≥ 0( 或

f (

g(

x)

x)

≤ 0) 的形式,

(2)转化为整式不等式(组)

f

g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值