高中数学知识点
高中数学第一章 -集合
§01. 集合与简易逻辑知识要点
一、知识结构:
本 章 知 识 主 要 分为集 合 、简单不 等 式 的 解 法 ( 集 合 化简)、简易逻辑三 部 分 :
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用 .
2. 集合的表示法:列举法、描述法、图形表示法 .
集合元素的特征:确定性、互异性、无序性 .
集合的性质:
①任何一个集合是它本身的子集,记为 A A;
②空集是任何集合的子集,记为 A;
③空集是任何非空集合的真子集;
如果 A B ,同时B A,那么 A = B.
如果 A B,B C,那么 A C .
[注]:① Z= {整数 }(√) Z ={全体整数 } ( 3)
②已知集合 S 中 A 的补集是一个有限集,则集合 A 也是有限集 .(3) (例: S=N; A=N ,则
CsA= {0})
③ 空集的补集是全集 .
④若集合 A=集合 B,则 CBA= ,CAB = CS(CAB)=D (注:CAB = ).
3. ①{(x,y)| xy =0,x∈R,y∈R}坐标轴上的点集 .
②{(x,y)| xy<0,x∈R, y∈R 二、四象限的点集 .
③{(x,y)| xy>0,x∈R, y∈R} 一、三象限的点集 .
[注]:①对方程组解的集合应是点集 .
- 1 -
例:
x
2x
y
3
3
y 1
解的集合 {(2,1)}.
2+1} 则 A∩B = ) ②点集与数集的交集是 . (例: A ={(x,y)| y =x+1} B={y| y =x
n 个. ②n 个元素的真子集有 2n -1 个. ③n 个元素的非空真子集
4. ①n 个元素的子集有 2
有 2
n-2 个.
5. ?①一个命题的否命题为真,它的逆命题一定为真 . 否命题 逆命题 .
②一个命题为真,则它的逆否命题一定为真 . 原命题 逆否命题 .
例:①若 a b 5,则a 2或b 3应是真命题 .
解:逆否: a = 2 且 b = 3,则 a+b = 5,成立,所以此命题为真 .
② x 1且y 2, x y 3.
解:逆否: x + y =3 x = 1 或 y = 2.
x 1且y 2 x y 3,故 x y 3是x 1且y 2 的既不是充分,又不是必要条件 .
?小范围推出大范围;大范围推不出小范围 .
3. 例:若 x 5, x 5或x 2 .
4. 集合运算:交、并、补 .
交:A B x x A 且x B
{ | , }
并:A B { x| x A或x B}
补:C A { x U ,且x A}
U
5. 主要性质和运算律
(1) 包含关系:
C
A A, A, A U , A U ,
U
A B, B C A C; A B A, A B B; A B A, A B B.
(2) 等价关系:
A B A B A A B B C A B U
U
( 二) 含绝对值不等式、一元二次不等式的解法及延伸
1. 整式不等式的解法
根轴法 (零点分段法) 从右向左,从上向下,奇穿偶回,零点讨论
①将不等式化为 a0(x-x 1)(x-x 2) , (x-x m)>0(<0) 形式,并将各因式 x 的系数化“ +”;( 为
了统一方便 )
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?) ;
④若不等式( x 的系数化“ +”后)是“ >0”, 则找“线”在 x 轴上方的区间;若不等式
是“<0”, 则找“线”在 x 轴下方的区间 .
x
1 x2 x
3
x
m-3
-
+ +
x
m-2 xm-1 xm x
-
(自右向左正负相间)
n n 1 n 2
则不等式 0( 0)( 0 0)
a0 x a x a x an a
1 2
的解可以根据各区间的符号确
定.
- 2 -
特例① 一元一次不等式 ax>b 解的讨论;
②一元二次不等式 ax
2+box>0(a>0) 解的讨论.
0 0 0
二次函数
y
2
ax
bx
c
( a 0 )的图
象
一元二次方程
有两相异实根 有两相等实根
2
ax
a
bx
c
0
的根
0
x1, x x x
(
2 1 2
)
b
x1 x 无实根
2
2a
2
ax
(a
bx c
0)的解集
0
x x x1或x x
2
x x
b
2a R
2
ax
(a
bx c
0)的解集
0
x
x1 x x
2
2. 分式不等式的解法
(1)标准化:移项通分化为
f
g
(
(
x)
x)
>0( 或
f
g
(
(
x)
x)
<0) ;
f
g
(
(
x)
x)
≥ 0( 或
f (
g(
x)
x)
≤ 0) 的形式,
(2)转化为整式不等式(组)
f
g