简介:Delphi作为基于Object Pascal的集成开发环境,广泛用于桌面应用开发。本文介绍如何在不依赖任何第三方库的前提下,使用Delphi原生代码实现二维码(QR Code)的生成。内容涵盖QR码结构解析、数据编码、Reed-Solomon纠错、位图转换、静区与格式信息添加、图像绘制与保存等全过程。通过TBitmap等内置组件完成图形化输出,适用于网址、文本、联系信息等数据的高效编码。项目源码结构清晰,便于集成到各类Delphi应用中,提升交互性与实用性。
1. QR码基本结构与编码规则详解
功能图形与数据区域布局
QR码由功能图形和数据区域两大部分构成。功能图形包括三个位于角落的 定位图案 (Finder Pattern),用于扫描设备快速识别二维码位置; 对齐图案 (Alignment Pattern)确保图像变形时仍可准确解析;以及贯穿两侧的 定时线 (Timing Pattern),提供行列同步基准。这些固定结构包围着存储实际信息的数据模块区,形成稳定的视觉锚点。
编码模式与版本机制
QR码支持多种编码模式以适应不同字符类型: 数字模式 (0-9)压缩效率最高, 字母数字模式 (A-Z、符号)次之, 字节模式 (UTF-8)通用性强, 汉字模式 则专为双字节字符设计。每种模式对应不同的位压缩策略,直接影响最终容量。QR码共分40个版本(Version 1至40),尺寸从21×21到177×177模块,呈每版本递增4模块的规律。随着版本升高,数据容量显著提升——例如Version 1在L级纠错下仅能存储26个数字,而Version 40可达7089个。
| 版本 | 尺寸(模块) | 数字模式最大容量(L级纠错) |
|---|---|---|
| 1 | 21×21 | 26 |
| 5 | 37×37 | 126 |
| 10 | 57×57 | 427 |
| 40 | 177×177 | 7089 |
纠错等级与应用权衡
QR码采用Reed-Solomon纠错技术,定义了四个纠错等级:
- L(Low) :可恢复约7%的损坏数据;
- M(Medium) :约15%;
- Q(Quartile) :约25%;
- H(High) :高达30%。
高纠错等级虽增强鲁棒性,但会占用更多码字空间,降低有效载荷。实际应用中需根据使用场景权衡:如打印在易磨损包装上的二维码宜选用H级,而屏幕显示或高质量标签可选M或L级以提高编码效率。
graph TD
A[输入内容] --> B{内容类型?}
B -->|纯数字| C[数字模式]
B -->|A-Z+符号| D[字母数字模式]
B -->|任意二进制| E[字节模式]
B -->|中文/日文| F[汉字模式]
C --> G[选择最小可行版本]
D --> G
E --> G
F --> G
G --> H[确定纠错等级]
H --> I[生成比特流]
通过遵循ISO/IEC 18004标准,开发者可在Delphi平台精确控制编码流程,为后续各阶段实现奠定理论基础。
2. Delphi中QR码数据编码与二进制转换
在二维码生成流程中,从原始输入文本到最终可绘制模块矩阵的转化过程,本质上是一场 从语义信息到物理比特流的结构化映射 。这一过程的核心环节之一便是“数据编码与二进制转换”。Delphi作为一款具备强类型系统和高效内存管理能力的原生编译语言,在实现QR码编码逻辑时展现出极佳的可控性与性能优势。本章将深入剖析如何在Delphi环境下完成从用户输入字符串到标准合规的二进制位流构造全过程,涵盖编码模式选择、位流拼接规则以及底层位操作的技术实现。
通过精确控制每一位的写入顺序、填充机制与模式标识,我们不仅能够确保生成的二维码符合ISO/IEC 18004规范要求,还能为后续纠错码计算、掩码优化等高级步骤提供稳定可靠的数据基础。尤其在嵌入式或桌面级应用开发场景下,Delphi对字节数组( TBytes )和位运算的高度支持,使得开发者可以精细掌控每一个bit的操作节奏,避免不必要的中间拷贝与资源浪费。
2.1 数据编码模式的选择与实现
QR码标准定义了四种主要的数据编码模式: 数字模式(Numeric)、字母数字模式(Alphanumeric)、字节模式(Byte)和汉字模式(Kanji) 。每种模式对应不同的字符集范围与压缩效率。正确识别并切换编码模式,是提升二维码容量利用率的关键所在。Delphi中的实现需结合正则判断、查表映射与动态状态机机制,以实现自动最优模式选择。
2.1.1 数字模式下的字符分组与压缩编码
当输入字符串仅包含 '0'..'9' 范围内的字符时,应优先采用数字模式进行编码。该模式利用三位十进制数最多可表示为10比特的特点,显著提高存储效率。例如:
-
123→ 用10比特表示(Bin(123) = 1111011,共7位,补前导零至10位) - 若不足三位,则按实际位数处理:
12→ 用7比特表示
编码步骤:
- 验证输入是否全为数字。
- 将字符串按每3个字符一组进行分组。
- 每组转换为对应的二进制表示,并补齐至固定长度(10/7/4比特)。
- 将所有组的比特串连接成连续位流。
以下是在Delphi中实现该逻辑的核心代码片段:
function TQRDataEncoder.EncodeNumeric(const Input: string): TBytes;
var
i, Len: Integer;
GroupValue: Integer;
BitBuffer: TBitStream;
begin
Len := Length(Input);
BitBuffer := TBitStream.Create;
try
// 写入模式标识符:0001 (4 bits)
BitBuffer.AppendBits($01, 4);
// 写入字符长度字段(根据版本使用不同位数,此处以9位为例)
BitBuffer.AppendBits(Len, 10); // 支持最大1023位数字
i := 1;
while i <= Len do
begin
if i + 2 <= Len then
begin
// 三字符组
GroupValue := StrToInt(Copy(Input, i, 3));
BitBuffer.AppendBits(GroupValue, 10);
Inc(i, 3);
end
else if i + 1 <= Len then
begin
// 双字符组
GroupValue := StrToInt(Copy(Input, i, 2));
BitBuffer.AppendBits(GroupValue, 7);
Inc(i, 2);
end
else
begin
// 单字符
GroupValue := StrToInt(Copy(Input, i, 1));
BitBuffer.AppendBits(GroupValue, 4);
Inc(i);
end;
end;
Result := BitBuffer.ToByteArray;
finally
BitBuffer.Free;
end;
end;
代码逻辑逐行解读:
TBitStream是自定义的位流缓冲类,用于逐bit追加数据(见后文封装说明)。- 第6行:调用
AppendBits($01, 4)写入 模式标识符0001,表明接下来是数字模式。- 第10行:写入 长度字段 ,此处使用10位,支持最大1023位数字,适用于大多数高版本QR码。
- 主循环中按3、2、1字符分组处理,分别用10、7、4位编码其数值。
- 所有结果汇总至
BitBuffer,最后转为TBytes返回。
| 分组类型 | 字符示例 | 十进制值 | 编码所需比特数 |
|---|---|---|---|
| 3位 | “123” | 123 | 10 |
| 2位 | “45” | 45 | 7 |
| 1位 | “6” | 6 | 4 |
此表格展示了数字模式下不同分组的编码效率差异。可见其平均每位数字仅消耗约3.33 bit,远低于ASCII编码的8 bit/字符。
graph TD
A[开始] --> B{是否全为数字?}
B -- 是 --> C[按3位分组]
C --> D[每组转整数]
D --> E[分别编码为10/7/4位]
E --> F[拼接至总位流]
F --> G[返回字节数组]
B -- 否 --> H[尝试其他模式]
上述流程图清晰地表达了数字模式编码的整体决策路径与执行逻辑。
2.1.2 字母数字模式的查表映射与位流生成
字母数字模式适用于由大写字母A-Z、数字0-9及部分符号( $ % * + - . / : )组成的字符串,共计45个字符。每个字符通过预定义查找表映射为一个0~44之间的索引值,然后以两个字符为单位组合编码,极大提升了压缩率。
查找表定义(Delphi常量数组):
const
AlnumTable: array['0'..'z'] of Byte = (
// '0'-'9'
0,1,2,3,4,5,6,7,8,9,
// ':','-','.','/', ... (ASCII 58~64)
10,11,12,13,$FF,$FF,$FF,
// 'A'-'Z'
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
// '[',... '`' (unused)
$FF,$FF,$FF,$FF,$FF,$FF,
// 'a'-'z' 映射同大写
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39
);
$FF表示非法字符,不可用于字母数字模式。
编码逻辑:
每两个字符构成一组,第一个字符乘以45加上第二个字符形成一个值,再编码为11或6位:
- 若有两个字符:
V = 45 × C1 + C2→ 编码为11位 - 若只有一个字符:直接编码为6位
示例:
- "AB" → 45×14 + 15 = 645 → Bin(645)=1010000101 (11位)
- "Z" → 39 → Bin(39)=100111 (6位)
function TQRDataEncoder.EncodeAlphanumeric(const Input: string): TBytes;
var
i, Len: Integer;
Code: Integer;
c: Char;
BitBuffer: TBitStream;
begin
BitBuffer := TBitStream.Create;
try
BitBuffer.AppendBits($02, 4); // 模式标识符 0010
BitBuffer.AppendBits(Length(Input), 9); // 长度字段(9位,适用于Version 1-9)
i := 1;
Len := Length(Input);
while i <= Len do
begin
c := Input[i];
if AlnumTable[c] = $FF then
raise Exception.CreateFmt('Invalid character in alphanumeric mode: "%s"', [c]);
if i + 1 <= Len then
begin
// 成对处理
Code := AlnumTable[c] * 45 + AlnumTable[Input[i+1]];
BitBuffer.AppendBits(Code, 11);
Inc(i, 2);
end
else
begin
// 单独字符
BitBuffer.AppendBits(AlnumTable[c], 6);
Inc(i);
end;
end;
Result := BitBuffer.ToByteArray;
finally
BitBuffer.Free;
end;
end;
参数说明与逻辑分析:
AppendBits($02, 4):写入模式标识符0010。- 使用9位长度字段,限制输入不超过512字符(适合低版本QR码);更高版本可用更长字段。
- 循环中检查字符合法性,若不在允许集合内则抛出异常。
- 成对编码时使用
Code := idx1 * 45 + idx2实现紧凑压缩。
| 输入字符 | 映射值 | 编码方式 | 输出比特数 |
|---|---|---|---|
| AB | 14,15 | 45×14+15=645 | 11 |
| 9 | 9 | 单字符 | 6 |
| $ | 10 | 单字符 | 6 |
该模式平均每个字符占用约5.5 bit,优于字节模式的8 bit,但不如纯数字模式高效。
stateDiagram-v2
[*] --> Start
Start --> ValidateChar
ValidateChar --> MapToIndex : 查表
MapToIndex --> PairCheck
PairCheck --> TwoCharEncode : 有下一字符
PairCheck --> OneCharEncode : 无下一字符
TwoCharEncode --> Append11Bits
OneCharEncode --> Append6Bits
Append11Bits --> NextPair
Append6Bits --> EndLoop
NextPair --> PairCheck
EndLoop --> Finish
Finish --> [*]
状态图展示了字母数字模式编码的状态流转过程,强调字符配对与分支处理机制。
2.1.3 字节模式(UTF-8)下的通用数据处理
字节模式是最通用的编码方式,适用于任意Unicode文本(通常先转换为UTF-8编码)。它不对数据做额外压缩,每个字符直接以其UTF-8字节形式写入,每个字节占8位。
虽然压缩率最低,但兼容性最强,特别适合中文、表情符号或其他非拉丁字符。
Delphi实现要点:
Delphi默认使用WideString(UTF-16),因此需要显式转换为UTF-8字节序列。
uses
System.SysUtils, System.NetEncoding;
function TQRDataEncoder.EncodeByteMode(const Input: string): TBytes;
var
UTF8Bytes: TBytes;
BitBuffer: TBitStream;
i: Integer;
begin
BitBuffer := TBitStream.Create;
try
BitBuffer.AppendBits($04, 4); // 模式标识符 0100
UTF8Bytes := TNetEncoding.UTF8.GetBytes(Input);
BitBuffer.AppendBits(Length(UTF8Bytes), 8); // 长度字段(8位)
for i := 0 to High(UTF8Bytes) do
BitBuffer.AppendBits(UTF8Bytes[i], 8);
Result := BitBuffer.ToByteArray;
finally
BitBuffer.Free;
end;
end;
扩展说明:
TNetEncoding.UTF8.GetBytes()确保字符串正确转换为UTF-8字节流。- 长度字段使用8位,适用于小型输入(≤255字节);对于大文本,应使用16位长度字段(如版本≥6)。
- 此方法不进行任何压缩,直接逐字节写入。
| 输入内容 | UTF-8字节数 | 编码开销(bit/字符) |
|---|---|---|
| “Hello” | 5 | 8 |
| “你好” | 6 | 24(每个汉字3字节) |
| “👍” | 4 | 32 |
尽管字节模式效率较低,但在现代应用场景中仍是不可或缺的选择。
2.1.4 模式标识符与长度字段的写入规范
每种编码模式都必须在数据开头写入 模式标识符 和 字符长度字段 ,这是QR码解析器正确还原数据的前提。
| 编码模式 | 模式标识符(4位) | 长度字段位数(依版本而定) |
|---|---|---|
| 数字 | 0001 | 10 / 12 / 14 |
| 字母数字 | 0010 | 9 / 11 / 13 |
| 字节 | 0100 | 8 / 16 / 16 |
| 汉字 | 1000 | 8 / 10 / 12 |
注:长度字段位数随QR码版本变化。例如:
- Version 1–9:数字模式用10位
- Version 10–26:用12位
- Version 27–40:用14位
Delphi中可通过版本参数动态决定长度字段宽度:
function GetCharCountBits(Mode: TQRDataMode; Version: Integer): Integer;
begin
case Mode of
dmNumeric:
if Version <= 9 then Result := 10
else if Version <= 26 then Result := 12
else Result := 14;
dmAlphanumeric:
if Version <= 9 then Result := 9
else if Version <= 26 then Result := 11
else Result := 13;
dmByte:
if Version <= 9 then Result := 8
else Result := 16;
dmKanji:
if Version <= 9 then Result := 8
else if Version <= 26 then Result := 10
else Result := 12;
else
raise Exception.Create('Unknown mode');
end;
end;
该函数可根据当前版本智能返回正确的长度字段位数,保证跨版本兼容性。
pie
title 各编码模式压缩效率对比(每字符平均比特数)
“数字模式” : 3.33
“字母数字模式” : 5.5
“字节模式” : 8.0
“汉字模式” : 13(双字节编码)
饼图直观展示各模式的空间利用率差异,凸显模式选择的重要性。
(本章节其余内容将在后续输出中继续展开)
3. Reed-Solomon(RS)纠错算法实现
二维码之所以具备强大的容错能力,核心在于其采用了 Reed-Solomon(RS)纠错编码 技术。该技术能够在部分数据丢失或损坏的情况下,依然恢复原始信息,是QR码在复杂环境中稳定读取的关键保障。本章将从数学基础出发,深入剖析RS码在Delphi平台上的完整实现路径,涵盖有限域运算、生成多项式构造、纠错码字计算流程以及多区块交织机制。通过系统化的讲解与可运行的代码示例,读者不仅能理解RS算法的内在逻辑,还能掌握如何将其高效集成到实际的二维码生成器中。
3.1 RS码数学基础与有限域运算
Reed-Solomon纠错机制建立在抽象代数中的 伽罗瓦域(Galois Field, GF) 基础之上,特别是GF(2⁸)这一特定结构。理解这一数学背景对于正确实现纠错功能至关重要。GF(2⁸)表示一个包含256个元素的有限域,每个元素可表示为0~255之间的整数,且所有加法和乘法操作均需满足模不可约多项式的封闭性规则。
3.1.1 GF(2^8)伽罗瓦域的定义与性质
在GF(2⁸)中,每一个元素都可以视为次数小于8的二进制系数多项式。例如,数值 57 可以写成二进制 00111001 ,对应多项式:
x^5 + x^4 + x^3 + 1
在这个域中,所有的算术运算都基于模一个 不可约多项式 进行,QR码标准ISO/IEC 18004指定使用的不可约多项式为:
m(x) = x^8 + x^4 + x^3 + x^2 + 1 \quad (\text{十六进制表示: } 0x11D)
这意味着任何超过7次的多项式都需要用这个多项式进行模除,确保结果仍落在0~255范围内。
运算特性:
- 加法即异或(XOR) :由于系数仅取0或1,两个元素相加等价于按位异或。
- 乘法需查表优化 :直接进行多项式乘法并模除效率极低,通常采用预计算的对数(Log)和反对数(AntiLog)表来加速。
下面是一个用于构建GF(2⁸)运算支持的数据结构定义:
type
TGFTable = array[0..255] of Byte;
var
LogTable: TGFTable; // 指数 → 对数映射
AntiLogTable: TGFTable; // 对数 → 指数映射
这些表将在初始化时填充,以便后续快速执行乘除法。
3.1.2 多项式表示法与模乘/模加运算
在RS编码过程中,数据被视为一个多项式序列,其中每一“项”是一个GF(2⁸)中的字节值。例如,一段由5个字节组成的数据 [D0, D1, D2, D3, D4] 可表示为:
P(x) = D_0x^4 + D_1x^3 + D_2x^2 + D_3x + D_4
在此基础上,纠错码的生成本质上是对该多项式除以某个生成多项式后的余数求解。
加法运算(模2)
function GFAdd(a, b: Byte): Byte;
begin
Result := a xor b;
end;
逐行分析 :
- 第2行:利用异或实现无进位的二进制加法,符合GF(2⁸)中加法等于XOR的性质。
- 此函数时间复杂度O(1),无需额外查找,适用于高频调用场景。
乘法运算(查表法)
function GFMul(a, b: Byte): Byte;
var
logA, logB: Integer;
begin
if (a = 0) or (b = 0) then
Exit(0);
logA := LogTable[a];
logB := LogTable[b];
Result := AntiLogTable[(logA + logB) mod 255];
end;
逐行分析 :
- 第3~4行:若任一操作数为零,则乘积为零,提前返回。
- 第5~6行:通过查Log表将原值转为指数形式。
- 第7行:指数相加后模255(因为非零元素构成阶为255的循环群),再通过AntiLog表还原为原始域元素。
- 使用此方法将O(n)的多项式乘法简化为O(1)的查表操作,极大提升性能。
| 操作类型 | 实现方式 | 时间复杂度 | 是否推荐 |
|---|---|---|---|
| GF加法 | XOR | O(1) | ✅ |
| GF乘法 | 查表法 | O(1) | ✅✅✅ |
| GF除法 | 查表法(指数相减) | O(1) | ✅ |
以下为Log/AntiLog表的初始化流程图(使用mermaid):
graph TD
A[开始初始化GF(2^8)] --> B[设置初始alpha:=1]
B --> C[遍历i from 0 to 254]
C --> D[AntiLog[i] := alpha]
D --> E[Log[alpha] := i]
E --> F[alpha := alpha * 2 (mod m(x))]
F -->|是否溢出高位?| G[异或0x11D]
G --> H[更新alpha]
H --> C
C -- i=254 --> I[设置Log[0]:=255(无效)]
I --> J[结束初始化]
该流程保证了所有非零元素都能被α(本原元)的幂次唯一表示,从而支撑高效的乘除运算。
3.1.3 生成多项式的推导过程(g(x))
Reed-Solomon码的纠错能力取决于所选的生成多项式 $ g(x) $,它是由连续根构成的最小多项式乘积:
g(x) = (x + α^0)(x + α^1)(x + α^2)…(x + α^{n-1})
其中 $ n $ 是纠错码字的数量。例如,在纠错等级L下,Version 1 QR码有7个纠错码字,则需展开7个因子得到一个7次多项式。
在Delphi中,我们可以通过递归卷积方式逐步构建该多项式:
procedure GenerateGeneratorPoly(var GenPoly: array of Byte; NumECBytes: Integer);
var
i, j: Integer;
Temp: array[0..255] of Byte;
begin
FillChar(Temp, SizeOf(Temp), 0);
Temp[0] := 1; // 初始为1 (单位多项式)
for i := 0 to NumECBytes - 1 do
begin
for j := i + 1 downto 1 do
begin
Temp[j] := GFAdd(GFMul(Temp[j], AlphaPower(i)), Temp[j - 1]);
end;
Temp[0] := GFMul(Temp[0], AlphaPower(i)); // x项 × 当前根
end;
Move(Temp, GenPoly[0], NumECBytes + 1);
end;
逐行分析 :
- 第6行:初始化临时数组为全0,并设首项为1,代表初始多项式 $ P(x)=1 $。
- 第9行:外层循环控制添加第i个因子 $ (x + α^i) $。
- 第10~12行:内层反向遍历防止覆盖未处理数据(类似背包问题优化)。
- 第11行:当前项更新公式来源于卷积:新系数 = 上一轮系数×αⁱ + 左侧系数。
- 第14行:复制结果至输出参数。
此过程最终生成形如 [g₀, g₁, ..., gₙ] 的系数数组,用于后续多项式除法。
3.2 纠错码字的计算流程
在完成GF(2⁸)环境搭建与生成多项式构造后,下一步是将输入数据转换为纠错码字。这一步的核心是执行 带余除法 :将数据多项式除以生成多项式,所得余数即为纠错码。
3.2.1 数据码字多项式构建
假设输入数据共有k个字节,形成多项式:
D(x) = d_0x^{k-1} + d_1x^{k-2} + \cdots + d_{k-1}
为了进行长除法,需将其扩展为长度为 $ k + t $ 的缓冲区(t为纠错码字数),高位存放数据,低位预留t个字节作为余数空间。
procedure BuildDataPolynomial(const Data: TBytes; var Poly: TBytes; ECBytes: Integer);
var
i: Integer;
begin
SetLength(Poly, Length(Data) + ECBytes);
for i := 0 to High(Data) do
Poly[i] := Data[i];
// 后ECBytes字节自动初始化为0,用于存储余数
end;
参数说明 :
-Data: 原始编码后的数据字节流(来自第二章输出)
-Poly: 输出的待处理多项式,长度为数据+纠错字节数
-ECBytes: 根据版本与纠错等级查表获得
该步骤准备好了被除数,接下来进入关键的除法阶段。
3.2.2 长除法求余数获取纠错码字序列
多项式长除法模拟手算过程,逐次消去最高次项。由于所有运算都在GF(2⁸)中进行,减法等同于加法(XOR),因此每一步只需找到合适的乘子使首项抵消。
procedure CalculateECC(const DataPoly: TBytes; const GenPoly: array of Byte; var ECC: TBytes);
var
LenData, LenGen, i, j: Integer;
Factor: Byte;
begin
LenData := Length(DataPoly);
LenGen := Length(GenPoly);
ECC := Copy(DataPoly, LenData - Length(ECC), Length(ECC)); // 初始化为尾部0区
for i := 0 to LenData - LenGen do
begin
if DataPoly[i] = 0 then Continue;
Factor := DataPoly[i];
for j := 0 to LenGen - 1 do
begin
DataPoly[i + j] := GFAdd(DataPoly[i + j], GFMul(Factor, GenPoly[j]));
end;
end;
// 提取最后LenGen-1个字节作为ECC
SetLength(ECC, LenGen - 1);
Move(DataPoly[LenData - LenGen + 1], ECC[0], Length(ECC));
end;
逐行分析 :
- 第7行:ECC长度应为生成多项式阶数(即LenGen - 1),即纠错字节数。
- 第10行:跳过前导零项,避免无效计算。
- 第11行:当前首项系数即为乘子Factor。
- 第14行:逐项执行data[i+j] ^= factor * gen[j],相当于减去一项。
- 最终余数位于数据区末尾,提取即可。
该算法的时间复杂度为 $ O(k \times t) $,虽为嵌套循环,但在实际QR码中小t值(最多68字节)使其完全可行。
3.2.3 Delphi中多项式除法的迭代实现
为增强代码健壮性,建议封装为独立类成员函数,并加入边界检查:
type
TRSCodec = class
class function Encode(const Data: TBytes; ECBytes: Integer): TBytes;
end;
class function TRSCodec.Encode(const Data: TBytes; ECBytes: Integer): TBytes;
var
DataPoly, GenPoly: TBytes;
i: Integer;
begin
if ECBytes < 1 or ECBytes > 68 then
raise Exception.Create('Invalid ECC byte count');
SetLength(GenPoly, ECBytes + 1);
GenerateGeneratorPoly(GenPoly, ECBytes);
BuildDataPolynomial(Data, DataPoly, ECBytes);
CalculateECC(DataPoly, GenPoly, Result);
end;
扩展性说明 :
- 支持动态选择纠错等级(L/M/Q/H),不同版本对应不同ECBytes。
- 异常检测防止非法输入导致内存越界。
- 可进一步缓存常用GenPoly以减少重复计算。
3.3 分块纠错与码字交织
高版本QR码因数据量大,需将数据划分为多个区块分别编码,以降低单次计算负载并提高抗局部损伤能力。
3.3.1 根据版本与纠错等级划分数据块
QR码规范提供了详细的分块策略表。例如,Version 5-H模式下:
| 参数 | 数值 |
|---|---|
| 总数据码字数 | 56 |
| 分组数 | 2 |
| 每组数据块大小 | 13 / 14 |
| 每组ECC块大小 | 16 |
需依据ISO/IEC 18004标准表查得各版本配置。
type
TBlockConfig = record
NumBlocks: Integer;
DataCodewords: Integer;
ECCodewords: Integer;
end;
加载策略后,对原始数据切片处理:
procedure SplitIntoBlocks(const Data: TBytes; const Config: TBlockConfig; var Blocks: TArray<TBytes>);
var
i, StartIdx, BlockSize: Integer;
begin
SetLength(Blocks, Config.NumBlocks);
BlockSize := Config.DataCodewords;
StartIdx := 0;
for i := 0 to Config.NumBlocks - 1 do
begin
SetLength(Blocks[i], BlockSize);
Move(Data[StartIdx], Blocks[i][0], BlockSize);
Inc(StartIdx, BlockSize);
end;
end;
3.3.2 每个数据块独立生成纠错码
对每个子块调用TRSCodec.Encode生成对应ECC:
for i := 0 to High(DataBlocks) do
begin
ECCBlocks[i] := TRSCodec.Encode(DataBlocks[i], ECPerBlock);
end;
保证每个块拥有独立校验信息,便于局部修复。
3.3.3 码字交织输出以增强抗损能力
最终码字按 列优先 方式交织排列,使得相邻码字来自不同块,防止单一区域损毁影响整体恢复。
procedure Interleave(const DataBlocks, ECCBlocks: TArray<TBytes>; var Final: TBytes);
var
MaxDataLen, MaxECClen, TotalLen, i, j: Integer;
begin
MaxDataLen := MaxValue(Length(DataBlocks));
MaxECClen := MaxValue(Length(ECCBlocks));
TotalLen := MaxDataLen * Length(DataBlocks) + MaxECClen * Length(ECCBlocks);
SetLength(Final, TotalLen);
// 交错数据部分
for i := 0 to MaxDataLen - 1 do
for j := 0 to High(DataBlocks) do
if i < Length(DataBlocks[j]) then
Final[i * Length(DataBlocks) + j] := DataBlocks[j][i];
// 交错ECC部分
for i := 0 to MaxECClen - 1 do
for j := 0 to High(ECCBlocks) do
if i < Length(ECCBlocks[j]) then
Final[MaxDataLen * Length(DataBlocks) + i * Length(ECCBlocks) + j] := ECCBlocks[j][i];
end;
优势分析 :
- 将原本集中的错误分散化,提升BCH译码成功率。
- 符合ISO标准布局要求,确保兼容性。
3.4 实际编码中的边界情况处理
3.4.1 不足位补零与截断策略
当总码字数不足最大容量时,需填充终止符和pad字节(11101100, 00010001交替)直至填满。
procedure PadToTotal(const Data: TBytes; TotalCodewords: Integer; out Padded: TBytes);
const
PadBytes: array[0..1] of Byte = ($EC, $11);
var
i: Integer;
begin
Padded := Copy(Data);
i := 0;
while Length(Padded) < TotalCodewords do
begin
SetLength(Padded, Length(Padded) + 1);
Padded[High(Padded)] := PadBytes[i mod 2];
Inc(i);
end;
end;
3.4.2 异常输入检测与错误抛出机制
增加前置验证:
if Length(Input) > MaxAllowed then
raise EQRCodeException.Create('Input exceeds maximum capacity for selected version');
结合try-except结构保障程序稳定性。
综上所述,本章全面实现了Reed-Solomon纠错模块的核心组件,从数学原理到工程落地,构建了一个鲁棒、高效的Delphi原生RS编码引擎,为后续二维码图像生成提供坚实的数据完整性保障。
4. 二维码模块布局与位图像素映射
二维码的生成过程不仅涉及数据编码与纠错处理,更关键的是将逻辑上的比特流转化为可视化的二维矩阵结构。这一转化过程的核心在于“模块布局”——即将经过编码和纠错的数据按照特定规则填充到一个 $N \times N$ 的布尔型网格中,并在此基础上绘制定位图案、对齐标记、定时线等视觉特征元素,最终通过掩码优化提升可读性与抗干扰能力。本章深入剖析 Delphi 平台下如何实现从二进制位流到像素矩阵的完整映射流程,涵盖功能图形嵌入、蛇形路径填充、掩码评估机制以及最终的二值化输出。
4.1 二维码矩阵初始化与功能图形绘制
二维码的视觉识别依赖于其独特的几何结构设计,其中最核心的部分是 功能图形(Functional Patterns) ,包括定位标记(Finder Pattern)、对齐图案(Alignment Pattern)和定时线(Timing Pattern)。这些图形在解码过程中起到坐标定位与方向判断的关键作用,必须严格按照 ISO/IEC 18004 标准进行精确放置。
4.1.1 创建N×N布尔型二维数组(Module Matrix)
在 Delphi 中,为表示二维码的每一个“模块”(即最小单位格子),需定义一个二维布尔数组用于记录每个位置是否被黑色模块占据。考虑到不同版本 QR 码尺寸差异(从 Version 1 的 $21\times21$ 到 Version 40 的 $177\times177$),应动态创建该数组:
type
TQRModuleMatrix = array of array of Boolean;
var
Matrix: TQRModuleMatrix;
Size: Integer;
procedure InitializeMatrix(Version: Integer);
begin
Size := 17 + Version * 4; // 计算矩阵边长
SetLength(Matrix, Size, Size); // 动态分配内存
end;
逻辑分析:
-Size := 17 + Version * 4是根据标准公式计算出当前版本对应的矩阵大小。例如,Version 1 对应 $21=17+4\times1$。
- 使用SetLength(Matrix, Size, Size)实现动态二维数组初始化,避免固定大小限制。
- 每个元素初始值默认为False,代表白色模块;后续设置为True表示黑色模块。
此结构作为所有绘图操作的基础容器,在整个生成流程中持续更新状态。
4.1.2 定位标记(Finder Pattern)的固定位置嵌入
定位标记由三个同心正方形构成:外层黑框 ($7\times7$)、中间白框 ($5\times5$)、内核黑点 ($3\times3$),分布在左上、右上和左下角。其实现如下:
procedure DrawFinderPattern(X, Y: Integer);
var
i, j: Integer;
begin
for i := -1 to 7 do
for j := -1 to 7 do
begin
if (i < 0) or (j < 0) or (i > 6) or (j > 6) then
Continue; // 超出范围跳过
if (i in [0..6]) and (j in [0..6]) then
begin
Matrix[Y + i, X + j] :=
((i = 0) or (i = 6) or (j = 0) or (j = 6)) or // 外圈黑
((i in [2..4]) and (j in [2..4])); // 内核黑
end;
end;
end;
// 调用三次分别绘制三处
DrawFinderPattern(0, 0); // 左上
DrawFinderPattern(Size - 7, 0); // 右上
DrawFinderPattern(0, Size - 7); // 左下
参数说明:
-X,Y:起始坐标,指向 $7\times7$ 区域左上角。
- 循环控制确保仅修改合法区域。
- 布尔表达式实现了“边框+中心”的双层结构,无需额外查表。
该图案构成了 QR 码最基本的视觉锚点,扫描设备据此确定码的存在及其旋转角度。
4.1.3 对齐图案分布规则与动态插入
对齐图案用于纠正因变形或透视引起的局部错位。其数量和位置随版本变化而变化,仅适用于 Version ≥ 2。标准提供了预定义的“对齐位置序列”,如 Version 7 的对齐点位于第 26、42、58 行列。
const
AlignmentPoints: array[2..40] of array of Integer = (
[6, 18], [6, 22], [6, 26], [6, 30], [6, 34], ... // 省略部分
);
procedure DrawAlignmentPattern(CenterX, CenterY: Integer);
var
i, j: Integer;
begin
for i := -2 to 2 do
for j := -2 to 2 do
begin
if Abs(i) = 2 or Abs(j) = 2 then
Matrix[CenterY + i, CenterX + j] := True // 白环外侧黑框
else if (i = 0) and (j = 0) then
Matrix[CenterY, CenterX] := True; // 中心黑点
end;
end;
// 遍历所有组合插入
if Version >= 2 then
begin
var Points := AlignmentPoints[Version];
for var i := 0 to High(Points) do
for var j := 0 to High(Points) do
if not IsReservedArea(Points[i], Points[j]) then // 检查是否重叠
DrawAlignmentPattern(Points[i], Points[j]);
end;
逻辑分析:
-AlignmentPoints数组存储各版本对齐点行列索引。
-DrawAlignmentPattern绘制 $5\times5$ 图案:外围黑框 + 中心点。
- 插入前调用IsReservedArea判断是否与定位标记冲突,防止覆盖。
以下是部分版本的对齐点分布示意表:
| 版本 | 尺寸 | 对齐位置(行列索引) |
|---|---|---|
| 2 | 25×25 | [6, 18] |
| 5 | 37×37 | [6, 22, 38] |
| 7 | 53×53 | [6, 26, 46] |
| 10 | 69×69 | [6, 28, 50] |
此外,使用 Mermaid 流程图展示对齐图案插入决策流程:
graph TD
A[开始插入对齐图案] --> B{版本 >= 2?}
B -- 否 --> C[跳过]
B -- 是 --> D[获取该版本对齐坐标列表]
D --> E[遍历所有(X,Y)组合]
E --> F{是否处于保留区?}
F -- 是 --> G[跳过不绘制]
F -- 否 --> H[调用DrawAlignmentPattern(X,Y)]
H --> I[继续下一组]
I --> E
4.1.4 定时线连接与保留区域设置
定时线是一组交替黑白的线条,横贯上下左右两侧,避开定位图案所在行/列。它帮助解码器同步扫描步长。
procedure DrawTimingPatterns;
var
i: Integer;
begin
for i := 7 to Size - 8 do
begin
Matrix[i, 6] := (i mod 2 = 0); // 垂直方向
Matrix[6, i] := (i mod 2 = 0); // 水平方向
end;
end;
代码解释:
- 从第7列开始至倒数第8列结束(避开 Finder),每隔一格设为黑。
-mod 2 = 0实现交替模式。
- 注意第6行/列已被预留作 Timing Line 所在通道。
同时,某些区域被永久保留用于存放格式信息(Format Information)与版本信息(Version Information),不可用于数据填充。这些区域需提前标记:
procedure MarkReservedAreas;
begin
// 格式信息区域(两段)
for var i := 0 to 8 do
begin
Matrix[i, 8] := True; // 左侧竖条
Matrix[8, i] := True; // 上方横条
end;
Matrix[8, 8] := False; // 交叉点特殊处理
Matrix[8, Size - 7] := True; // 右上方补充段
end;
这些保留区将在第五章用于写入纠错等级与掩码编号信息。
4.2 数据与纠错码字的矩阵填充
完成功能图形绘制后,下一步是将之前生成的完整数据流(含原始数据与纠错码字)逐位填入剩余空白模块中。由于 QR 码采用非线性填充路径,理解其“蛇形扫描”机制至关重要。
4.2.1 蛇形路径扫描与比特逐位填入
QR 码的数据填充遵循一种特殊的“Z 字形”双列蛇形路径,从右下角开始向上移动,交替方向并跳过已占用区域。这种设计提高了空间利用率并便于硬件解码。
填充逻辑如下:
function FillDataBits(const BitStream: TBytes): Boolean;
var
Col, Row: Integer;
Upward: Boolean;
BitIndex: Integer;
begin
Col := Size - 1;
Row := Size - 1;
Upward := True;
BitIndex := 0;
while Col > 0 do
begin
if Col = 6 then Dec(Col, 2); // 跳过 Timing Column
for var k := 0 to 1 do // 每次处理两列中的一列
begin
var CurrentCol := Col - k;
if CurrentCol < 0 then Exit;
if Upward then
begin
for Row := Size - 1 downto 0 do
begin
if not IsReservedOrOccupied(CurrentCol, Row) then
begin
Matrix[Row, CurrentCol] := (GetBit(BitStream, BitIndex));
Inc(BitIndex);
end;
end;
end
else
begin
for Row := 0 to Size - 1 do
begin
if not IsReservedOrOccupied(CurrentCol, Row) then
begin
Matrix[Row, CurrentCol] := (GetBit(BitStream, BitIndex));
Inc(BitIndex);
end;
end;
end;
end;
Col -= 2;
Upward := not Upward;
end;
Result := BitIndex <= Length(BitStream) * 8;
end;
参数说明:
-BitStream: 输入的完整比特流(TBytes 类型,每字节8位)
-GetBit(Stream, Index):自定义函数提取指定位置的单个 bit。
-IsReservedOrOccupied():检查该位置是否属于功能图形或已被占用。
该算法模拟真实填充路径,确保每一位准确落入正确模块。
4.2.2 掩码评估前的数据排布完成状态
当上述填充完成后,整个矩阵除格式/版本信息区外均已填满。此时的状态称为“掩码前布局”,可用于后续掩码评分比较。重要的是,此时不应应用任何掩码变换,以保证公平评估。
可通过调试方式输出中间状态矩阵:
procedure DumpMatrixToConsole;
begin
for var y := 0 to Size - 1 do
begin
for var x := 0 to Size - 1 do
Write(ifthen(Matrix[y,x], '█', '░'));
Writeln;
end;
end;
这有助于验证路径走向与保留区规避效果。
4.2.3 填充过程中跳过保留区域的判断逻辑
为防止数据覆盖关键图形,必须在每次写入前执行保护性检测:
function IsReservedOrOccupied(X, Y: Integer): Boolean;
begin
Result :=
// Finder Areas
((X < 9) and (Y < 9)) or // 左上
((X >= Size - 8) and (Y < 9)) or // 右上
((X < 9) and (Y >= Size - 8)) or // 左下
// Timing Lines
(X = 6) or (Y = 6) or
// Format Info
(X = 8) or (Y = 8);
end;
此函数高效拦截非法访问,保障整体结构完整性。
4.3 掩码生成与最佳掩码选择
尽管数据已填入矩阵,但直接输出可能导致大量连续同色块,影响扫描稳定性。为此,QR 码引入六种标准掩码图案(Mask Patterns 0–7,实际使用 0–7 中的 0–7?错!标准为 0–7 编号但只允许使用 0–7?不对!实际仅允许使用 0 至 7 中的 0–7?No! 正确答案是: 共8种掩码编号,但实际规范定义了6种可用模式,编号为 0–5 —— 掩码编号字段占3位,共8种可能,但只有6种合法)。
4.3.1 六种标准掩码图案的算法实现
每种掩码由一个布尔函数决定哪些位置需要反转颜色:
| 掩码编号 | 条件公式(i=行, j=列) |
|---|---|
| 0 | (i + j) mod 2 = 0 |
| 1 | i mod 2 = 0 |
| 2 | j mod 3 = 0 |
| 3 | (i + j) mod 3 = 0 |
| 4 | ((i div 2) + (j div 3)) mod 2 = 0 |
| 5 | (i j) mod 2 + (i j) mod 3 = 0 |
| 6 | ((i j) mod 2 + (i j) mod 3) mod 2 = 0 |
| 7 | ((i+j) mod 2 + (i*j) mod 3) mod 2 = 0 |
⚠️ 注:实际上 ISO/IEC 18004 定义了 8 种掩码编号(0–7) ,但常用实现中普遍采用全部 8 种进行评分。
Delphi 实现示例(以掩码0为例):
function ApplyMask_Pattern0(var M: TQRModuleMatrix): TQRModuleMatrix;
var
i, j: Integer;
begin
Result := CopyMatrix(M); // 复制原矩阵
for i := 0 to Size - 1 do
for j := 0 to Size - 1 do
if ((i + j) mod 2 = 0) and not IsReservedOrOccupied(j, i) then
Result[i, j] := not Result[i, j];
end;
其余掩码依此类推,替换条件即可。
4.3.2 四项惩罚评分规则的应用(Condition 1~4)
为选出最优掩码,ISO 定义四类惩罚项:
| 惩罚项 | 描述 |
|---|---|
| P1 | 每出现一行/列有≥5个连续相同颜色模块,+3分(每多1个+1) |
| P2 | 每个 $2\times2$ 同色块 +3 分 |
| P3 | 类似“11111010000”或“00001011111”的特定模式 +40 分 |
| P4 | 黑色模块占比偏离50%时,每偏离1%,+10分 |
实现片段(P2 示例):
function Penalty2(const M: TQRModuleMatrix): Integer;
var
Count: Integer;
i, j: Integer;
begin
Count := 0;
for i := 0 to Size - 2 do
for j := 0 to Size - 2 do
if (M[i,j] = M[i,j+1]) and (M[i,j] = M[i+1,j]) and (M[i,j] = M[i+1,j+1]) then
Inc(Count);
Result := Count * 3;
end;
总分为四项之和,得分最低者胜出。
4.3.3 自动选取最低得分掩码提升可读性
遍历所有8种掩码,分别计算总惩罚分,选择最小者:
var
BestMask: Integer := 0;
MinScore: Integer := MaxInt;
Scores: array[0..7] of Integer;
for var MaskID := 0 to 7 do
begin
var TempMatrix := ApplyMask(MaskID, BaseMatrix);
Scores[MaskID] :=
Penalty1(TempMatrix) +
Penalty2(TempMatrix) +
Penalty3(TempMatrix) +
Penalty4(TempMatrix);
if Scores[MaskID] < MinScore then
begin
MinScore := Scores[MaskID];
BestMask := MaskID;
end;
end;
最终选定 BestMask 并将其编号写入格式信息区。
4.4 最终模块矩阵的二值化处理
经过掩码变换后的矩阵即为最终可视图像的逻辑表示。最后一步是将其转换为适合图像渲染的二值形式。
4.4.1 黑白模块映射为Boolean或Integer状态
通常 True 表示黑色模块, False 表示白色。也可扩展为整型数组支持灰度:
type
TGrayMatrix = array of array of Byte;
function ToGrayMatrix(const BoolMat: TQRModuleMatrix): TGrayMatrix;
var
i, j: Integer;
begin
SetLength(Result, Size, Size);
for i := 0 to Size - 1 do
for j := 0 to Size - 1 do
Result[i,j] := ifthen(BoolMat[i,j], 0, 255); // 0=黑, 255=白
end;
此格式兼容大多数图像库。
4.4.2 支持反转色设计的接口预留
某些应用场景需要反色显示(白底黑码 → 黑底白码),可在封装类中添加属性控制:
TQRCodeGenerator = class
private
FInverted: Boolean;
public
property Inverted: Boolean read FInverted write FInverted;
end;
// 渲染时:
PixelValue := ifthen(ModuleState xor FInverted, 0, 255);
提供灵活性而不破坏核心逻辑。
综上所述,本章完整呈现了从逻辑矩阵构建到视觉图像生成的全过程,奠定了后续图像绘制的技术基础。
5. 格式信息与纠错级别嵌入技术
二维码(QR Code)的解码过程不仅依赖于数据区域中存储的信息,还需要准确读取 格式信息 (Format Information),以确定当前二维码所使用的 纠错等级 和 掩码模式 。这些元信息对于正确解析整个矩阵至关重要。如果格式信息错误或损坏,即使主数据区完整无损,解码器也可能无法恢复原始内容。因此,在生成二维码时必须严格按照 ISO/IEC 18004 标准对格式信息进行编码、保护并精确写入指定位置。
本章将深入探讨格式信息的数据构成原理,详细分析其基于 BCH(15,5) 的前向纠错机制,并阐述如何在最终模块矩阵中实现双重写入与掩码防护策略。通过 Delphi 实现层面的代码示例,展示从位级构造到物理布局的全过程,确保生成的二维码具备高度可读性和抗干扰能力。
5.1 格式信息的数据结构组成
格式信息是 QR 码中一个固定长度为 15 位 的二进制序列,包含两个核心组成部分: 纠错等级标识 和 掩码编号 ,此外还附加了用于校验的 BCH 校验码 。这 15 位信息被编码后写入矩阵中的特定位置,且在水平和垂直方向重复出现,以增强识别鲁棒性。
5.1.1 纠错等级位与掩码编号位组合
根据 ISO/IEC 18004 规范,格式信息的前 5 位 (称为“原始格式数据”)由以下两部分拼接而成:
- 2 位:纠错等级编码
- 3 位:掩码编号(Mask Pattern ID)
| 纠错等级 | 编码值(二进制) | 对应参数 |
|---|---|---|
| L (Low) | 01 | 可修复约 7% 损坏 |
| M (Medium) | 00 | 可修复约 15% 损坏 |
| Q (Quartile) | 11 | 可修复约 25% 损坏 |
| H (High) | 10 | 可修复约 30% 损坏 |
掩码编号范围为 0~7,共需 3 位表示:
| 掩码编号 | 条件表达式(i: 行号, j: 列号) |
|---|---|
| 0 | (i + j) mod 2 == 0 |
| 1 | i mod 2 == 0 |
| 2 | j mod 3 == 0 |
| 3 | (i + j) mod 3 == 0 |
| 4 | (⌊i/2⌋ + ⌊j/3⌋) mod 2 == 0 |
| 5 | ((i * j) mod 2) + ((i * j) mod 3) == 0 |
| 6 | ((i + j) mod 2) + ((i * j) mod 3) == 0 |
| 7 | ((i * j) mod 4) == 0 |
注意:实际使用中通常只选择使惩罚分数最低的掩码编号(见第四章掩码评估规则)。
例如,若选择纠错等级 M 和掩码编号 3 ,则原始格式数据为:
[纠错等级] = '00', [掩码编号] = '011' → 合并为 '00011'(即十进制 3)
该 5 位数据将成为后续 BCH 编码的输入源。
5.1.2 BCH(15,5)编码原理简介
为了提高格式信息的可靠性,标准采用 BCH(15,5) 编码方案对其进行扩展。这意味着原始 5 位信息经过编码后变为 15 位码字,其中包含 10 位校验位,能够检测并纠正一定数量的比特错误。
BCH 码是一种循环码,其关键在于定义合适的生成多项式 $ g(x) $。对于 BCH(15,5),生成多项式如下:
g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1
\quad \text{(对应十六进制: 0x537)}
此多项式可以保证最小汉明距离为 7,理论上最多可纠正 3 位错误。
编码过程本质上是对原始消息多项式 $ m(x) $ 左移 10 位(乘以 $ x^{10} $),然后除以 $ g(x) $,得到余数 $ r(x) $,最后将 $ m(x) \cdot x^{10} + r(x) $ 作为输出码字。
该操作可在 Delphi 中通过位运算高效实现。
5.1.3 格式信息校验码的生成方法
以下是 Delphi 中实现 BCH(15,5) 编码的核心函数原型:
function GenerateBCH15_5(DataBits: Word): Word;
const
GEN_POLY = $537; // x^10 + x^8 + x^5 + x^4 + x^2 + x + 1
var
bch, i: Integer;
begin
bch := DataBits shl 10; // 左移10位,留出校验空间
for i := 4 downto 0 do
begin
if (bch and (1 shl (i + 10))) <> 0 then
bch := bch xor (GEN_POLY shl i);
end;
Result := (DataBits shl 10) or bch;
end;
🔍 逻辑逐行解读:
-
DataBits: Word—— 输入为 5 位有效数据(如0b00011)。 -
bch := DataBits shl 10—— 将原始数据左移 10 位,形成高 5 位有数据、低 10 位为零的中间值。 - 循环从高位开始检查每一位是否需要异或生成多项式。
- 若当前最高位为 1,则执行
xor (GEN_POLY shl i)进行模 2 除法模拟。 - 最终结果合并原始数据与计算出的余数(校验码)。
假设输入为 0b00011 (3),调用 GenerateBCH15_5(3) 返回的 15 位码字为:
原始数据 << 10: 000110000000000
校验码(计算得): 1010011011
最终结果: 000111010011011 (0x1D9B)
这个 15 位的结果即为待写入的格式信息原始码。
graph TD
A[输入5位格式数据] --> B{左移10位}
B --> C[初始化寄存器]
C --> D[从高位遍历]
D --> E{当前位为1?}
E -->|是| F[XOR生成多项式]
E -->|否| G[继续下一位]
F --> H[更新寄存器]
G --> H
H --> I{完成所有位?}
I -->|否| D
I -->|是| J[输出15位BCH码]
上述流程图清晰展示了 BCH 编码的迭代过程,体现了其在有限状态下的确定性行为。
5.2 格式信息的BCH编码与掩码保护
虽然 BCH 编码已提供一定程度的容错能力,但在实际环境中,由于打印模糊、光照不均或局部遮挡,仍可能导致格式信息误读。为此,QR 码标准引入了一种固定的 XOR 掩码 (也称“格式掩码”),防止全黑或全白等极端图案造成扫描失败。
5.2.1 使用生成多项式进行BCH编码
前面已介绍过 BCH 编码的基本实现方式。但在正式应用前,还需确认编码后的 15 位串满足一定的合法性要求。
Delphi 中建议封装如下验证函数:
function ValidateBCH15_5(Codeword: Word): Boolean;
const
GEN_POLY = $537;
var
remainder: Word;
i: Integer;
begin
remainder := Codeword;
for i := 4 downto 0 do
begin
if (remainder and (1 shl (i + 10))) <> 0 then
remainder := remainder xor (GEN_POLY shl i);
end;
Result := (remainder = 0);
end;
✅ 参数说明:
-
Codeword: 完整的 15 位格式信息码(含数据+校验) - 函数返回
True表示该码字符合 BCH(15,5) 规范
该函数可用于调试阶段验证编码器输出是否正确,避免因算法偏差导致不可逆错误。
5.2.2 编码后15位格式串的可靠性验证
我们可通过一组测试向量来验证编码器的准确性:
| 原始数据(5位) | 十进制 | 预期 BCH 编码结果(Hex) | 是否有效 |
|---|---|---|---|
00000 | 0 | 0x543 | 是 |
00001 | 1 | 0x0FC | 是 |
00011 (M,3) | 3 | 0x1D9B | 是 |
11111 | 31 | 0x07C | 是 |
在 Delphi 单元测试中加入如下断言:
Assert(GenerateBCH15_5(3) = $1D9B, 'BCH编码错误:期望$1D9B');
Assert(ValidateBCH15_5($1D9B), 'BCH验证失败:$1D9B非合法码字');
此类自动化校验有助于提升生成系统的稳定性。
5.2.3 应用固定XOR掩码防止误读
尽管 BCH 能纠多位错误,但某些物理场景下(如反色打印、强光反射)可能使扫描仪误判整体极性。为此,ISO 标准规定:所有格式信息在写入前必须与一个固定的 掩码常量 0x5412 进行 XOR 操作。
掩码值
0x5412(二进制:101010000010010)设计目的是打破长串连续 0 或 1,减少视觉冗余。
// 最终用于写入矩阵的格式信息
FinalFormatInfo := GenerateBCH15_5(DataBits) xor $5412;
例如:
- 若原始 BCH 编码为
$1D9B(000111010011011) - XOR 掩码后变为:
$1D9B xor $5412 = $4989
这样处理后的码字更利于光学识别设备区分黑白模块边界。
下面表格总结不同纠错等级与掩码组合对应的最终格式信息值(经 XOR 处理后):
| ECC Level | Mask ID | Raw 5-bit | BCH Encoded (Hex) | Final After XOR 0x5412 |
|---|---|---|---|---|
| M | 3 | 00011 | 1D9B | 4989 |
| L | 1 | 01001 | 12CC | 06DB |
| Q | 4 | 11100 | 0E71 | 5A63 |
| H | 2 | 10010 | 1F45 | 4B57 |
在实际生成过程中,应优先选取使掩码惩罚评分最低的 Mask ID,并据此确定最终格式信息。
5.3 格式信息在矩阵中的双重写入
QR 码的设计强调容错与易识别性,因此格式信息并非仅写入一次,而是 在两个关键位置同时写入 :
- 右下角横向带状区 (第 8 行,列 0 ~ 7 及 8 的一部分)
- 左上角纵向带状区 (第 0 ~ 6 行及第 7 行的部分列,位于 Finder Pattern 旁边)
这种双份备份机制极大提升了扫码成功率,尤其在图像倾斜或部分遮挡的情况下。
5.3.1 水平与垂直方向同步写入位置确定
根据 QR 码结构规范,格式信息分布在两个非连续区域:
| 写入方向 | 行索引(i) | 列索引(j) | 数据位顺序 |
|---|---|---|---|
| 水平(Top) | i=8 | j=0~8(跳过 j=6), j=9~13 | 从右至左 |
| 垂直(Left) | i=0~6, i=7, i=8(跳过 i=6) | j=8 | 从下至上 |
具体映射关系如下表所示(共 15 位):
| Bit Index | Position (Horizontal) | Position (Vertical) |
|---|---|---|
| 0 | (8, 8) | (8, 8) ← 共享点 |
| 1 | (8, 7) | (7, 8) |
| 2 | (8, 5) | (5, 8) |
| 3 | (8, 4) | (4, 8) |
| 4 | (8, 3) | (3, 8) |
| 5 | (8, 2) | (2, 8) |
| 6 | (8, 1) | (1, 8) |
| 7 | (8, 0) | (0, 8) |
| 8 | (8, 13) | (7, 8) 已写?注意冲突!→ 实际为 (8,13) |
| 9 | (8, 12) | (8, 12) → 不属于垂直 |
| … | … | … |
| 14 | (8, 9) | (8, 9) |
⚠️ 注意:第 6 列(j=6)和第 6 行(i=6)属于 Timing Pattern 区域,必须跳过;而 (8,6) 和 (6,8) 是保留空白区,不可写入。
5.3.2 避开定位图案关键区域的安全写入
在写入格式信息前,必须确保不会覆盖任何功能图形:
- Finder Patterns :位于 (0,0), (0,N−7), (N−7,0) 的 7×7 模块
- Timing Patterns :横纵各一条穿过中心的黑白交替线
- Alignment Patterns :仅存在于 Version ≥ 2 的其他角落
Delphi 中可定义安全写入函数:
procedure WriteFormatBits(var Matrix: TBoolMatrix;
FormatCode: Word; IsVertical: Boolean);
const
SKIP_POS = 6; // 跳过 timing pattern 所在行列
var
i, bitIdx: Integer;
x, y: Integer;
begin
for bitIdx := 0 to 14 do
begin
case IsVertical of
True:
begin
if bitIdx < 7 then
begin
x := 8;
y := 7 - bitIdx; // 从上往下填
if y >= 6 then Dec(y); // 跳过 y=6
end
else if bitIdx = 7 then
begin
x := 8; y := 8; // 共享点
end
else
begin
x := 14 - bitIdx;
y := 8;
end;
end;
False:
begin
if bitIdx < 8 then
begin
x := 7 - bitIdx;
y := 8;
if x >= 6 then Dec(x);
end
else
begin
x := 14 - bitIdx;
y := 8;
end;
end;
end;
// 设置模块值(0=白, 1=黑),注意:BCH XOR后按位提取
Matrix[y, x] := ((FormatCode shr bitIdx) and 1) = 1;
end;
end;
🧩 参数说明:
-
Matrix: 当前二维码布尔矩阵(N×N) -
FormatCode: 经过 BCH 编码与 XOR 掩码处理后的 15 位值 -
IsVertical: 控制写入方向(True=左侧纵向,False=顶部横向)
该函数按照标准规定的路径逐一设置模块状态,严格避开保留区域。
5.3.3 写入后的矩阵一致性检查
完成格式信息写入后,建议添加一致性校验逻辑,防止意外重叠或遗漏:
function CheckFormatIntegrity(const Matrix: TBoolMatrix;
Version: Integer): Boolean;
var
horzBits, vertBits: Word;
begin
// 从矩阵中反向提取已写入的格式信息
horzBits := ExtractFormatBits(Matrix, False);
vertBits := ExtractFormatBits(Matrix, True);
// 解掩码还原真实BCH码
horzBits := horzBits xor $5412;
vertBits := vertBits xor $5412;
// 验证两者是否一致且BCH有效
Result := (horzBits = vertBits) and ValidateBCH15_5(horzBits);
end;
此函数可用于生成流程末尾的质量控制环节,确保输出二维码符合国际标准。
flowchart TB
Start[开始写入格式信息] --> Decide{写入方向?}
Decide -->|垂直| VLoop[遍历bit 0~14]
Decide -->|水平| HLoop[遍历bit 0~14]
VLoop --> CalcPosV[计算(i,j)坐标]
HLoop --> CalcPosH[计算(i,j)坐标]
CalcPosV --> SkipCheckV{是否为保留区?}
CalcPosH --> SkipCheckH{是否为保留区?}
SkipCheckV -- 是 --> NextV
SkipCheckH -- 是 --> NextH
SkipCheckV -- 否 --> SetBitV
SkipCheckH -- 否 --> SetBitH
SetBitV --> WriteMatrixV
SetBitH --> WriteMatrixH
WriteMatrixV --> NextV
WriteMatrixH --> NextH
NextV --> EndV{完成?}
NextH --> EndH{完成?}
EndV -- 否 --> VLoop
EndH -- 否 --> HLoop
EndV -- 是 --> Verify[执行一致性校验]
EndH -- 是 --> Verify
Verify --> Finish[格式信息写入完成]
该流程图完整呈现了格式信息写入的控制流,突出了条件判断与坐标映射的关键节点。
综上所述,格式信息不仅是 QR 码运行的基础元数据,更是保障其稳定解码的核心机制之一。通过严谨的 BCH 编码、XOR 掩码保护以及双位置冗余写入,Delphi 实现的生成器能够在复杂环境下依然保持高可用性与兼容性。下一章将进一步整合前述所有步骤,构建完整的二维码图像绘制系统。
6. Delphi原生实现二维码生成完整流程
6.1 使用TBitmap绘制二维码图像
在Delphi中, TBitmap 是VCL和FMX框架下用于处理位图图像的核心类。要将经过编码、纠错、掩码处理后的二维码模块矩阵(Boolean二维数组)可视化为图像,需通过 TBitmap 实现像素级绘制。
首先初始化 TBitmap 对象,并设置其像素格式以确保兼容性:
var
Bitmap: TBitmap;
ModuleMatrix: array of array of Boolean;
ModuleSize: Integer; // 每个模块的像素大小,例如5x5像素
begin
Bitmap := TBitmap.Create;
try
// 假设QR码版本为5,矩阵尺寸为43x43模块
Bitmap.SetSize(43 * ModuleSize, 43 * ModuleSize);
Bitmap.PixelFormat := pf24bit; // 推荐使用24位真彩色
接下来,使用双重循环遍历模块矩阵,根据布尔值决定绘制黑色或白色像素块:
var x, y: Integer;
for y := 0 to High(ModuleMatrix) do
for x := 0 to High(ModuleMatrix[y]) do
begin
Bitmap.Canvas.Brush.Color :=
IfThen(ModuleMatrix[y][x], clBlack, clWhite); // 黑色表示1,白色表示0
// 绘制一个矩形代表单个模块
Bitmap.Canvas.FillRect(
Rect(x * ModuleSize, y * ModuleSize,
(x + 1) * ModuleSize, (y + 1) * ModuleSize)
);
end;
其中 ModuleSize 控制输出图像的分辨率与清晰度。较大的 ModuleSize 可提升打印可读性,但增加文件体积。典型取值为 4~10。
| ModuleSize | 输出尺寸(Version 1) | 适用场景 |
|---|---|---|
| 4 | 17×17 ×4 = 68px | 小型标签 |
| 6 | 102px | 移动端扫描 |
| 8 | 136px | 海报/广告展示 |
| 10 | 170px | 高精度印刷品 |
此方法适用于 VCL 应用程序;若在 FMX 跨平台项目中使用,则应替换为 TCanvas.DrawRect 或 TBitmapData 直接写入内存缓冲区以提升性能。
6.2 静止区域(Quiet Zone)添加方法
静止区域是二维码四周必须保留的空白边框,防止扫描设备误识别邻近图案。ISO/IEC 18004 规定最小宽度为 4个模块 。
为了实现静止区域,在创建 TBitmap 时应预留额外空间:
const
QuietZoneModules = 4;
var
MatrixSize: Integer;
TotalSize: Integer;
begin
MatrixSize := GetQRCodeSize(Version); // 如Version=1 → 21
TotalSize := (MatrixSize + 2 * QuietZoneModules) * ModuleSize;
Bitmap.SetSize(TotalSize, TotalSize);
Bitmap.Canvas.Brush.Color := clWhite;
Bitmap.Canvas.FillRect(Bitmap.Canvas.ClipRect);
随后调整绘制偏移量,使二维码居中:
for y := 0 to MatrixSize - 1 do
for x := 0 to MatrixSize - 1 do
begin
var DrawX := (x + QuietZoneModules) * ModuleSize;
var DrawY := (y + QuietZoneModules) * ModuleSize;
if ModuleMatrix[y][x] then
Bitmap.Canvas.Pen.Color := clBlack
else
continue; // 白色背景已填充
Bitmap.Canvas.MoveTo(DrawX, DrawY);
Bitmap.Canvas.Rectangle(DrawX, DrawY,
DrawX + ModuleSize, DrawY + ModuleSize);
end;
该策略确保了生成的二维码符合国际标准,可通过主流扫码器(如微信、ZBar、ZXing)正确识别。
6.3 二维码图像保存为文件或内存流
生成后的二维码图像可导出为多种格式。以下示例演示如何保存为 PNG 文件并支持透明背景:
procedure SaveQRAsPNG(Bitmap: TBitmap; const FileName: string);
var
PNG: TPNGImage;
TempBitmap: TBitmap;
begin
PNG := TPNGImage.Create;
try
TempBitmap := TBitmap.Create;
try
TempBitmap.Assign(Bitmap);
PNG.Assign(TempBitmap);
PNG.SaveToFile(FileName);
finally
TempBitmap.Free;
end;
finally
PNG.Free;
end;
end;
此外,支持将图像写入内存流以便剪贴板操作或网络传输:
function QRBitmapToStream(Bitmap: TBitmap; Format: TFPCustomImageClass): TMemoryStream;
var
Img: TImage;
begin
Result := TMemoryStream.Create;
Img := TImage.Create(nil);
try
Img.Picture.Bitmap.Assign(Bitmap);
Img.Picture.SaveToStream(Result, Format);
Result.Position := 0;
finally
Img.Free;
end;
end;
常用图像格式对比:
| 格式 | 是否压缩 | 透明支持 | 兼容性 | 推荐用途 |
|---|---|---|---|---|
| PNG | 是 | 是 | 高 | 网页嵌入、高质量输出 |
| BMP | 否 | 否 | 极高 | 本地调试、简单存储 |
| JPEG | 是 | 否 | 高 | 文档插入(不推荐) |
| GIF | 是 | 有限 | 中 | 动图序列(非本例) |
6.4 TQRCodeGenerator类设计与封装
为提升代码复用性和易用性,建议封装为面向对象的 TQRCodeGenerator 类:
type
TECCLevel = (eclL, eclM, eclQ, eclH);
TMaskPattern = 0..7;
TQRCodeGenerator = class
private
FInputText: string;
FECCLevel: TECCLevel;
FVersion: Integer;
FMaskPattern: TMaskPattern;
FModuleSize: Integer;
FQuietZone: Integer;
FBitmap: TBitmap;
procedure ValidateInputs;
function EncodeToModuleMatrix: TArray<TArray<Boolean>>;
procedure RenderToBitmap(const Matrix: TArray<TArray<Boolean>>);
public
constructor Create;
destructor Destroy; override;
function GenerateBitmap: TBitmap;
procedure SaveToFile(const FileName: string);
property InputText: string read FInputText write FInputText;
property ECCLevel: TECCLevel read FECCLevel write FECCLevel default eclM;
property Version: Integer read FVersion write FVersion default 0;
property ModuleSize: Integer read FModuleSize write FModuleSize default 5;
end;
核心方法整合流程如下:
function TQRCodeGenerator.GenerateBitmap: TBitmap;
var
Matrix: TArray<TArray<Boolean>>;
begin
ValidateInputs;
Matrix := EncodeToModuleMatrix; // 调用前几章所述编码流程
RenderToBitmap(Matrix);
Result := FBitmap;
end;
外部调用极为简洁:
var
QRGen: TQRCodeGenerator;
begin
QRGen := TQRCodeGenerator.Create;
try
QRGen.InputText := 'https://www.example.com';
QRGen.ECCLevel := eclH;
QRGen.ModuleSize := 8;
QRGen.GenerateBitmap.SaveToFile('qrcode.png');
finally
QRGen.Free;
end;
end;
该类设计兼顾 VCL 与 FMX 平台兼容性,可通过条件编译切换图形后端。同时内置异常处理机制,捕获编码失败、内存不足等错误情形,返回清晰提示信息,便于集成至企业级应用系统中。
简介:Delphi作为基于Object Pascal的集成开发环境,广泛用于桌面应用开发。本文介绍如何在不依赖任何第三方库的前提下,使用Delphi原生代码实现二维码(QR Code)的生成。内容涵盖QR码结构解析、数据编码、Reed-Solomon纠错、位图转换、静区与格式信息添加、图像绘制与保存等全过程。通过TBitmap等内置组件完成图形化输出,适用于网址、文本、联系信息等数据的高效编码。项目源码结构清晰,便于集成到各类Delphi应用中,提升交互性与实用性。
6370

被折叠的 条评论
为什么被折叠?



