多维多重背包问题_5种好用的背包问题算法模版汇总

这篇博客详细介绍了背包问题的五种常见类型:01背包、完全背包、多重背包、多重背包II和分组背包问题,并提供了对应的算法模板和实例解析。其中,01背包和完全背包通过等价变形进行了一维优化,多重背包问题通过二进制优化提升效率。此外,还展示了装箱问题和整数划分问题的解题思路和代码实现。
摘要由CSDN通过智能技术生成

一. 背包问题算法模版大全

1. 01背包问题

46c120315cd7b0844443ccfb7dc99776.png

朴素做法

// f[i][j]表示只看前i个物品,总体积是j的情况下,总价值最大是多少
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;
int v[N], w[N], f[N][N];

int main() {
    
    int n, m;
    cin >> n >> m;

    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];

    // 朴素
    for (int i = 1; i <= n; i++) {
    
        for (int j = 0; j <= m; j ++) {
    
            f[i][j] = f[i - 1][j];
            if (j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    }

    cout << f[n][m] << endl;

}

一维优化——对代码做等价变形

分析:

要使右边的f表示的是
时的值,只需要逆序遍历
,这样右边的
还没被更新,表示的是循环
时的值,因此可以等价变形
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;
int v[N], w[N], f[N];

int main() {
    
    int n, m;
    cin >> n >> m;

    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];

    for (int i = 1; i <= n; i++) {
    
        for (int j = m; j >= v[i]; j--) {
             // 倒序
            f[j] = max(f[j], f[j - v[i]] + w[i]);
            // 朴素 f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    }

    cout << f[m] << endl;

}

2. 完全背包问题

17d92da7908bb650a06ca867798acd24.png

完全背包问题等价表达式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值