玻尔兹曼分布涨落,《第七章玻耳兹曼统计》小结..doc

《第七章玻耳兹曼统计》小结.

《第七章 玻耳兹曼统计》小结

一、基本概念:

1、的非定域系及定域系遵守玻耳兹曼统计。

2、经典极限条件的几种表示:

;;;

3、热力学第一定律的统计解释:

即:从统计热力学观点看,做功:通过改变粒子能量引起内能变化;传热:通过改变粒子分布引起内能变化。

二、相关公式

1、非定域系及定域系的最概然分布

2、配分函数:

量子体系:

半经典体系:

经典体系:

3、热力学公式(热力学函数的统计表达式)

内能:

物态方程:

定域系:自由能: 熵:或

的非定域系(经典极限条件的玻色(费米)系统):

自由能:

熵:或

三、应用:

1、求能量均分定理

①求平均的方法要掌握:

②能量均分定理的内容---能量均分定理的应用:理想气体、固体、辐射场。

③经典理论的局限于问题

2、对的非定域系的应用

①掌握由麦氏分布向具体分布的国度方法,

②掌握求平均值的公式:

③热力学公式。

⑶理想气体的内能、热容量、熵、自由能的经典理论和量子理论的求解及其表达式。

3、对定域系的应用①爱因斯坦固体热容量理论②顺磁性固体。

四、应熟练掌握的有关计算

1、由麦氏分布向具体分布的过度方法

2、求平均值的方法:

3、的证明及相关应用

4、求配分函数进而求系统的热力学性质(定域系和的非定域系)

5、麦氏分布的应用

习题课

求广义力的基本公式的应用;

例1:根据公式,证明:对于极端相对论粒子,

有。上述结论对玻尔兹曼、玻色、费米分布均存立。

证明:令,,因此得到

压强

因内能,所以 。 证毕

由于在求证过程中,并未涉及分布的具体形式,故上述结论对玻尔兹曼、玻色、费米分布均存立。

二、熵的统计表达式及玻耳兹曼关系的应用

例2试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为

式中Ps是总粒子处于量子态s的概率,,对粒子的所有量子态求和。对于满足经典极限条件的非定域系统,熵的表达式有何不同?

证明:对于定域系

证法(1):

证法(2):对于满足玻耳兹曼分布的定域系

故:

讨论:对满足对的非定域系

例3:对如图所示的夫伦克尔缺陷,(1)假定正常位置和填隙位置数均为N,证明:由N个原子构成的晶体,在晶体中形成n个缺位和填隙原子而具有的熵等于

(2) 设原子在填隙位置和正常位置的能量差为u ,试由自由能为极小证明在温度为T时,缺位和填隙原子数为

(设)

证明:(1)当形成缺陷时,出现几个缺陷的各种占据方式就对应不同的微观状态,N个正常位置出现n个空位的可能方式数为,同样离开正常位置的n个原子去占据N个间隙位置的方式数也为,从而形成n个空位并有n个间隙位置为n个原子占据的方式数即微观态数 ,由此求得熵

(2)系统的自由能,取无缺陷时的晶体自由能为零时,平衡态时系统的自由能为极小。将自由能F对缺陷数n求一阶导数并令其为零,求得缺位和填隙原子数为

(设)

三、麦氏分布及其应用

例4:气体以恒定的速度沿z方向作整体运动,试证明,在平衡状态下分子动量的最概然分布为

证明:在体积V内,粒子质心在,…内的分子可能状态数为 ,而一个量子态上平均粒子数为,所以粒子质心在…的分子数为

将气体分子视为玻尔兹曼体系,给定分布下的微观状态数为

在、的条件下,应用斯特林近似公式,有

该体系应满足

(粒子数不变) ⑵

(总能量不变)       ⑶

(z方向动量守恒) ⑷

所求的最概然分布是在满足限制条件⑵、⑶、⑷式下,使取极大的分布。按照拉格朗日待定乘子法,引入待定因子,

构造函数

最可几分布时,,得

将⑸代入⑴得到,最可几分布时,粒子动量在…的分子数为 ⑹

将自由粒子的能量代入得

展开,相比较可得

; ⑻

将⑻代入⑺,得到:

证毕

式中的可由⑵、⑶、⑷确定。将⑺代入中积分求得

讨论:根据上式可求的平均值

这恰好是气体整体运动是的平均动量,即气体的平动动量为,由此可见气体的平衡状态并不因为气体整体平动而受到破坏,其物态方程仍然为。据此还可证明。

例5表面活性物质的分子在液面上作二维运动,可以看作二维理想气体,试写出二维理想气体中分子的速度分布和速率分布,并求平均速

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值