大家好,这里是信通小师兄的第二篇文章,今天给大家带来的是线性代数的进阶版--《矩阵论》中矩阵分类系列的第一部分--LU分解。
矩阵论是小师兄正在学习的课程,我总结了一些矩阵分解的资料,如解法、python代码等,将会陆续上传到知乎专栏/WX公众号(信通小师兄),欢迎各位小伙伴关注!
LU分解的本质
言归正传,回到今天的主题--LU分解。
LU分解在本质上是高斯消元法的一种表达形式。
敲重点:LU变换实质上是将A通过初等行变换变成一个上三角矩阵,其变换矩阵就是一个单位下三角矩阵。
下面为大家介绍LU的分解步骤,并给一道例题做详细解答,同时用python进行编程(需要python代码的可以下文复制粘贴,也可以回复关键词:LU分解,获取代码文件。)
LU分解就是将系数矩阵A转变成等价两个矩阵L和U的乘积 ,其中L和U分别是单位下三角矩阵和上三角矩阵。
当A的所有顺序主子式都不为0时,

本文介绍了矩阵论中的LU分解概念,详细解释了LU分解的本质——通过初等行变换将矩阵转化为上三角和下三角矩阵的乘积。文章提供了LU分解的计算方法,特别是Doolittle算法,并给出了一道例题及相应的Python代码实现,帮助读者理解和应用LU分解。
最低0.47元/天 解锁文章

2342

被折叠的 条评论
为什么被折叠?



