京瓷m1025底灰_京瓷复印机打印有底灰

满意答案

herocycwing

推荐于 2017.04.16

采纳率:59%    等级:7

已帮助:2209人

我的京瓷5035出现顽固底灰,经过N多过程,终于弄好.供你参考.

我买了两台5035(二手美国和日本),其中日本的一台一直有底灰.

为了去底灰,我经过如下过程,供你参考.

换粉,最终用的是中恒的粉,这个粉绝对没问题.但仍无效,另一台没问题.

换鼓芯,无效.

换电级丝,无效.

清理激光器,无效.

经过这么多硬件更换, 都无效.我都快要放弃了.

我仔细回想了修机器过程,硬件可试的地方都被我试过了.会不会是机器内部设置的问题.

有关机器黑度的调整我所知道的有两个地方:

一是u101的电压(第一个选项)设置。二是鼓架上的电位器(有个孔,里面有小螺扣)

经过不停的尝试,我解决了底灰问题。

方法:10871087,101,进入电压调节模式,第一选项,我调成了-10,刚好底灰没有了,

但印出来的字也比较浅。(注)可根据自己的机器情况调试。当好没有底灰就行了。只调第一个选项就行,其它选项也可以试,不过效果变化不大。

没有底灰了,但字比较浅,这时要调节电位器,顺时针到底是全白,回转是变黑,可以试到你最好的效果就行了。

以上原理:我猜的:U101的电压调节,是爆光处理值,我们刚好把底灰给处理了。

电位器是和液晶屏幕的浓度调节相同的,把爆光后的字加黑处理。

学过PS的图像处理的同学都知道,扫描完的东西得处理下,再打印,先去底色(纸上的颜色)后加深余下字的颜色,我想复印机的原理是一样的。

谢谢大家,以上内容可能只能文印店经常修机器的明白。如果不能白,我的号960110188,欢迎交流。追问: 谢谢

70分享举报

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值