matlab readme.txt,readme.txt

High-Speed Tracking with Kernelized Correlation Filters

J. F. Henriques R. Caseiro P. Martins J. Batista

TPAMI 2014

________________

To be published.

arXiv pre-print: http://arxiv.org/abs/1404.7584

Project webpage: http://www.isr.uc.pt/~henriques/circulant/

This MATLAB code implements a simple tracking pipeline based on the Kernelized

Correlation Filter (KCF), and Dual Correlation Filter (DCF).

It is free for research use. If you find it useful, please acknowledge the paper

above with a reference.

__________

Quickstart

1. Extract code somewhere.

2. The tracker is prepared to run on any of the 50 videos of the Visual Tracking

Benchmark [3]. For that, it must know where they are/will be located. You can

change the default location 'base_path' in 'download_videos.m' and 'run_tracker.m'.

3. If you don't have the videos already, run 'download_videos.m' (may take some time).

4. Execute 'run_tracker' without parameters to choose a video and test the KCF on it.

Note: The tracker uses the 'fhog'/'gradientMex' functions from Piotr's Toolbox.

Some pre-compiled MEX files are provided for convenience. If they do not work for your

system, just get the toolbox from http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

__________

The main interface function is 'run_tracker'. You can test several configurations (KCF,

DCF, MOSSE) by calling it with different commands:

run_tracker

Without any parameters, will ask you to choose a video, track using

the Gaussian KCF on HOG, and show the results in an interactive

figure. Press 'Esc' to stop the tracker early. You can navigate the

video using the scrollbar at the bottom.

run_tracker VIDEO

Allows you to select a VIDEO by its name. 'all' will run all videos

and show average statistics. 'choose' will select one interactively.

run_tracker VIDEO KERNEL

Choose a KERNEL. 'gaussian'/'polynomial' to run KCF, 'linear' for DCF.

run_tracker VIDEO KERNEL FEATURE

Choose a FEATURE type, either 'hog' or 'gray' (raw pixels).

run_tracker(VIDEO, KERNEL, FEATURE, SHOW_VISUALIZATION, SHOW_PLOTS)

Decide whether to show the scrollable figure, and the precision plot.

Useful combinations:

>> run_tracker choose gaussian hog %Kernelized Correlation Filter (KCF)

>> run_tracker choose linear hog %Dual Correlation Filter (DCF)

>> run_tracker choose gaussian gray %Single-channel KCF (ECCV'12 paper)

>> run_tracker choose linear gray %MOSSE filter (single channel)

For the actual tracking code, check out the 'tracker' function.

Though it's not required, the code will make use of the MATLAB Parallel Computing

Toolbox automatically if available.

__________

References

[1] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, "High-Speed Tracking with

Kernelized Correlation Filters", TPAMI 2014 (to be published).

[2] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, "Exploiting the Circulant

Structure of Tracking-by-detection with Kernels", ECCV 2012.

[3] Y. Wu, J. Lim, M.-H. Yang, "Online Object Tracking: A Benchmark", CVPR 2013.

Website: http://visual-tracking.net/

[4] P. Dollar, "Piotr's Image and Video Matlab Toolbox (PMT)".

Website: http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

[5] P. Dollar, S. Belongie, P. Perona, "The Fastest Pedestrian Detector in the

West", BMVC 2010.

_____________________________________

Copyright (c) 2014, Joao F. Henriques

Permission to use, copy, modify, and distribute this software for research

purposes with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

一键复制

编辑

Web IDE

原始数据

按行查看

历史

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值