java调用bert_NLP(十九)首次使用BERT的可视化指导

本文提供了一个使用DistillBERT进行句子情感分类的简单教程,结合SST2数据集,介绍了如何利用预训练的DistillBERT模型和逻辑回归进行情感分析。模型包括DistillBERT进行句子嵌入和逻辑回归进行分类,重点展示了模型的处理流程和预测机制。
摘要由CSDN通过智能技术生成

0d7e54d36244cf5dfe1c900d9094f553.png

本文是关于如何使用BERT的变异版本来进行句子分类的简单教程。该例子足够简单,因此可以作为首次使用BERT的介绍,当然,它也包含了一些关键性的概念。

数据集:SST2

本文中使用的数据集为SST2,它包含了电影评论的句子,每一句带有一个标签,或者标注为正面情感(取值为1),或者标注为负面情感(取值为0)。

085dab45ce93bf413462be018cba30f4.png

模型:句子情感分类

我们的目标是创建一个模型,它能够处理一个句子(就行我们数据集中的句子那样)并且输出1(表明该句子具有正面情感)或者0(表明该句子具有负面情感)。我们设想它长这样:

4dc3c55745cf091476f7389b7cd60952.png

事实上,该模型包含两个模型:

DistillBERT会处理句子并把它提取后的信息传递给下一个模型。DistillBERT是BERT的变异版本,由HuggingFace小组开发和开源。它是BERT的更轻量、更快速的版本,同时它的表现基本与BERT相近。

下一个模型,从scikit learn中导入的一个基本的逻辑回归模型(Logistic Regression model),它会利用 DistillBERT的处理结果,然后将句子进行分类成正面情感或者负面情感(分别为1或者0)。

在两个模型之间传递的数据为1个768维的向量。我们可以把这个向量理解为这个句子的嵌入向量(Embedding Vector),用于分类。

f303ffec01d3d9cbfae8899a0720c21e.png

模型训练

尽管我们用了两个模型,但是我们只会训练逻辑回归模型。对于Distill

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值