
本文是关于如何使用BERT的变异版本来进行句子分类的简单教程。该例子足够简单,因此可以作为首次使用BERT的介绍,当然,它也包含了一些关键性的概念。
数据集:SST2
本文中使用的数据集为SST2,它包含了电影评论的句子,每一句带有一个标签,或者标注为正面情感(取值为1),或者标注为负面情感(取值为0)。

模型:句子情感分类
我们的目标是创建一个模型,它能够处理一个句子(就行我们数据集中的句子那样)并且输出1(表明该句子具有正面情感)或者0(表明该句子具有负面情感)。我们设想它长这样:

事实上,该模型包含两个模型:
DistillBERT会处理句子并把它提取后的信息传递给下一个模型。DistillBERT是BERT的变异版本,由HuggingFace小组开发和开源。它是BERT的更轻量、更快速的版本,同时它的表现基本与BERT相近。
下一个模型,从scikit learn中导入的一个基本的逻辑回归模型(Logistic Regression model),它会利用 DistillBERT的处理结果,然后将句子进行分类成正面情感或者负面情感(分别为1或者0)。
在两个模型之间传递的数据为1个768维的向量。我们可以把这个向量理解为这个句子的嵌入向量(Embedding Vector),用于分类。

模型训练
尽管我们用了两个模型,但是我们只会训练逻辑回归模型。对于Distill
本文提供了一个使用DistillBERT进行句子情感分类的简单教程,结合SST2数据集,介绍了如何利用预训练的DistillBERT模型和逻辑回归进行情感分析。模型包括DistillBERT进行句子嵌入和逻辑回归进行分类,重点展示了模型的处理流程和预测机制。
最低0.47元/天 解锁文章
1557

被折叠的 条评论
为什么被折叠?



