BZOJ2877 NOI2012魔幻棋盘(二维线段树)

  显然一个序列的gcd=gcd(其差分序列的gcd,序列中第一个数)。于是一维情况直接线段树维护差分序列即可。

  容易想到将该做法拓展到二维。于是考虑维护二维差分,查询时对差分矩阵求矩形的gcd,再对矩形的两个边界求一下原本的gcd即可。

  但这样大概需要三个二维线段树,空间可能不太够。由于查询区域是由一个给定点拓展的,可以改为以该点为中心建差分矩阵,这样剩下部分是一个十字形,可以直接一维线段树维护,就只需要一个二维线段树了。

  注意题面有锅,详见discuss,被坑了一年。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map> 
using namespace std;
#define ll long long
#define N 500010
#define pii pair<int,int>
#define PII pair< pii , pii >
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);}
ll read()
{
    ll x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int n,m,T,X,Y,root[2],cnt[2],CNT,ROOT;
ll BIT[2][N];
vector<ll> a[N];
map<PII,int> id;
struct data{int l,r,L,R;ll gcd;
}tree[2][N<<1],TREE[N*20];
void BIT_add(int op,int n,int x,ll y){while (x<=n) BIT[op][x]+=y,x+=x&-x;}
ll BIT_query(int op,int x){ll s=0;while (x) s+=BIT[op][x],x-=x&-x;return s;}
ll calc(int i,int j)
{
    if (i<X&&j<Y) return a[i][j]-a[i+1][j]-a[i][j+1]+a[i+1][j+1];
    if (i<X&&j>Y) return a[i][j]-a[i+1][j]-a[i][j-1]+a[i+1][j-1];
    if (i>X&&j<Y) return a[i][j]-a[i-1][j]-a[i][j+1]+a[i-1][j+1];
    if (i>X&&j>Y) return a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
    return 0;
}
void add(int &k,int op,int l,int r,int x,ll p)
{
    if (!k) k=++cnt[op];
    if (l==r) {tree[op][k].gcd+=p;return;}
    int mid=l+r>>1;
    if (x<=mid) add(tree[op][k].l,op,l,mid,x,p);
    else add(tree[op][k].r,op,mid+1,r,x,p);
    tree[op][k].gcd=gcd(tree[op][tree[op][k].l].gcd,tree[op][tree[op][k].r].gcd);
}
ll query(int k,int op,int l,int r,int x,int y)
{
    if (x>y||!k) return 0; 
    if (l==x&&r==y) return tree[op][k].gcd;
    int mid=l+r>>1;
    if (y<=mid) return query(tree[op][k].l,op,l,mid,x,y);
    else if (x>mid) return query(tree[op][k].r,op,mid+1,r,x,y);
    else return gcd(query(tree[op][k].l,op,l,mid,x,mid),query(tree[op][k].r,op,mid+1,r,mid+1,y));
}
void BUILD(int &k,int l,int r,int x)
{
    id[make_pair(make_pair(x,x),make_pair(l,r))]=k=++CNT;
    if (l==r) {TREE[k].gcd=calc(x,l);return;}
    int mid=l+r>>1;
    BUILD(TREE[k].l,l,mid,x);
    BUILD(TREE[k].r,mid+1,r,x);
    TREE[k].gcd=gcd(TREE[TREE[k].l].gcd,TREE[TREE[k].r].gcd);
}
void BUILD2(int &k,int l,int r,int u,int x,int y)
{
    if (!k) id[make_pair(make_pair(l,r),make_pair(x,y))]=k=++CNT;
    TREE[k].L=id[make_pair(make_pair(l,u),make_pair(x,y))];
    TREE[k].R=id[make_pair(make_pair(u+1,r),make_pair(x,y))];
    TREE[k].gcd=gcd(TREE[TREE[k].L].gcd,TREE[TREE[k].R].gcd);
    if (x==y) return;
    int mid=x+y>>1;
    BUILD2(TREE[k].l,l,r,u,x,mid);
    BUILD2(TREE[k].r,l,r,u,mid+1,y);
}
void update(int k,int l,int r,int x)
{
    TREE[k].gcd=gcd(TREE[TREE[k].L].gcd,TREE[TREE[k].R].gcd);
    if (l==r) return;
    int mid=l+r>>1;
    if (x<=mid) update(TREE[k].l,l,mid,x);
    else update(TREE[k].r,mid+1,r,x);
}
void build(int &k,int l,int r)
{
    if (l==r) {BUILD(k,0,m+1,l);return;}
    id[make_pair(make_pair(l,r),make_pair(0,m+1))]=k=++CNT;
    int mid=l+r>>1;
    build(TREE[k].L,l,mid);
    build(TREE[k].R,mid+1,r);
    BUILD2(k,l,r,(l+r>>1),0,m+1);
}
void ADD(int &k,int l,int r,int x,ll p)
{
    if (l==r) {TREE[k].gcd+=p;return;}
    int mid=l+r>>1;
    if (x<=mid) ADD(TREE[k].l,l,mid,x,p);
    else ADD(TREE[k].r,mid+1,r,x,p);
    TREE[k].gcd=gcd(TREE[TREE[k].l].gcd,TREE[TREE[k].r].gcd);
}
void Add(int k,int l,int r,int x,int y,ll p)
{
    if (l==r) {ADD(k,0,m+1,y,p);return;}
    int mid=l+r>>1;
    if (x<=mid) Add(TREE[k].L,l,mid,x,y,p);
    else Add(TREE[k].R,mid+1,r,x,y,p);
    update(k,0,m+1,y);
}
ll QUERY(int k,int l,int r,int x,int y)
{
    if (l==x&&r==y) return TREE[k].gcd;
    int mid=l+r>>1;
    if (y<=mid) return QUERY(TREE[k].l,l,mid,x,y);
    else if (x>mid) return QUERY(TREE[k].r,mid+1,r,x,y);
    else return gcd(QUERY(TREE[k].l,l,mid,x,mid),QUERY(TREE[k].r,mid+1,r,mid+1,y));
}
ll Query(int k,int l,int r,int xl,int xr,int yl,int yr)
{
    if (xl>xr||yl>yr) return 0;
    if (l==xl&&r==xr) return QUERY(k,0,m+1,yl,yr);
    int mid=l+r>>1;
    if (xr<=mid) return Query(TREE[k].L,l,mid,xl,xr,yl,yr);
    else if (xl>mid) return Query(TREE[k].R,mid+1,r,xl,xr,yl,yr);
    else return gcd(Query(TREE[k].L,l,mid,xl,mid,yl,yr),Query(TREE[k].R,mid+1,r,mid+1,xr,yl,yr));
}
signed main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj2877.in","r",stdin);
    freopen("bzoj2877.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),m=read(),X=read(),Y=read(),T=read();
    for (int j=0;j<=m+1;j++) a[0].push_back(0);
    for (int i=1;i<=n;i++)
    {
        a[i].push_back(0);
        for (int j=1;j<=m;j++)
        a[i].push_back(read());
        a[i].push_back(0);
    }
    for (int j=0;j<=m+1;j++) a[n+1].push_back(0);
    build(ROOT,0,n+1);
    for (int i=1;i<=n;i++)
    BIT_add(0,n,i,a[i][Y]-a[i-1][Y]),add(root[0],0,1,n,i,a[i][Y]-a[i-1][Y]);
    for (int j=1;j<=m;j++)
    BIT_add(1,m,j,a[X][j]-a[X][j-1]),add(root[1],1,1,m,j,a[X][j]-a[X][j-1]);
    while (T--)
    {
        int op=read();
        if (op==0)
        {
            int up=read(),left=read(),down=read(),right=read();
            ll ans=gcd(BIT_query(0,X-up),query(root[0],0,1,n,X-up+1,X+down));
            ans=gcd(ans,gcd(BIT_query(1,Y-left),query(root[1],1,1,m,Y-left+1,Y+right)));
            ans=gcd(ans,Query(1,0,n+1,X-up,X-1,Y-left,Y-1));
            ans=gcd(ans,Query(1,0,n+1,X-up,X-1,Y+1,Y+right));
            ans=gcd(ans,Query(1,0,n+1,X+1,X+down,Y-left,Y-1));
            ans=gcd(ans,Query(1,0,n+1,X+1,X+down,Y+1,Y+right));
            printf(LL,abs(ans));
        }
        else
        {
            int xl=read(),yl=read(),xr=read(),yr=read();ll c=read();
            if (yl<=Y&&Y<=yr)
            {
                BIT_add(0,n,xl,c),add(root[0],0,1,n,xl,c);
                if (xr<n) BIT_add(0,n,xr+1,-c),add(root[0],0,1,n,xr+1,-c);
            }
            if (xl<=X&&X<=xr)
            {
                BIT_add(1,m,yl,c),add(root[1],1,1,m,yl,c);
                if (yr<m) BIT_add(1,m,yr+1,-c),add(root[1],1,1,m,yr+1,-c);
            }
            if (xl<=X&&yl<=Y)
            {
                if (xr<X&&yr<Y) Add(1,0,n+1,xr,yr,c);
                if (xr<X) Add(1,0,n+1,xr,yl-1,-c);
                if (yr<Y) Add(1,0,n+1,xl-1,yr,-c);
                Add(1,0,n+1,xl-1,yl-1,c);
            }
            if (xr>=X&&yl<=Y)
            {
                if (xl>X&&yr<Y) Add(1,0,n+1,xl,yr,c);
                if (xl>X) Add(1,0,n+1,xl,yl-1,-c);
                if (yr<Y) Add(1,0,n+1,xr+1,yr,-c);
                Add(1,0,n+1,xr+1,yl-1,c);
            }
            if (xl<=X&&yr>=Y)
            {
                if (xr<X&&yl>Y) Add(1,0,n+1,xr,yl,c);
                if (xr<X) Add(1,0,n+1,xr,yr+1,-c);
                if (yl>Y) Add(1,0,n+1,xl-1,yl,-c);
                Add(1,0,n+1,xl-1,yr+1,c);
            }
            if (xr>=X&&yr>=Y)
            {
                if (xl>X&&yl>Y) Add(1,0,n+1,xl,yl,c);
                if (xl>X) Add(1,0,n+1,xl,yr+1,-c);
                if (yl>Y) Add(1,0,n+1,xr+1,yl,-c);
                Add(1,0,n+1,xr+1,yr+1,c);
            }
        }
    }
    return 0;
}

 

  

 

转载于:https://www.cnblogs.com/Gloid/p/10325550.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值