-
总时间限制:
- 1000ms 内存限制:
- 256000kB
-
描述
-
众所周知,LZF很喜欢打一个叫Jubeat的游戏。这是个音乐游戏,游戏界面是4×4的方阵,会根据音乐节奏要求玩家按下一些指定方块(以下称combo)。LZF觉得这太简单了,于是自己仿了个游戏叫Jubeeeeeat,唯一不同之处就是界面大小,Jubeeeeeat的界面为n×n的方阵。
在某一刻,界面同时出现了若干个combo。LZF终于觉得有些困难了,但毕竟LZF不是普通人,他有很多只手。LZF的手分为m只“肉质手”和q只“意念手”。顾名思义,“肉质手”是实际存在的手,每只肉质手都有5根手指,每根手指能按一个combo,但每只手的速度都不同,受限于此,LZF的每只肉质手的控制范围是一个固定大小的正方形。“意念手”即虚无之手,每只手只有1根手指,但控制范围为全局。
现在LZF想知道,他最多能按下多少个combo。
输入
-
输入文件名为 jubeeeeeat.in。
第1行输入三个正整数n,m,q。
接下来是一个n×n的01矩阵,描述combo的位置,1为combo。
最后m行每行三个正整数xi,yi,ai,分别表示第i只肉质手掌控区域左上方块的行、列和边长。(行、列从1数起)
输出
-
输出文件名为 jubeeeeeat.out。
输出一个正整数,表示最多能按下的combo数。
样例输入
-
3 1 3 1 0 1 1 1 1 1 0 1 1 1 2
样例输出
-
6
提示
-
【数据说明】
对于20%的数据,n=5,m=2,q=2;
对于50%的数据,1≤n≤20,1≤m, q≤50; - 对于100%的数据,1≤n≤40,1≤m, q≤300,1≤xi, yi≤n,1≤xi+ai-1, yi+ai-1≤n。
- 思路:网络流。
- 建图:源点向每一只肉质手连一条流量为5的边,每一只肉质手,向自己所控制的区域内的所有combo连流量为1的边。
- 所有的combo向汇点连流量为1的边,然后跑最大流。
-
#include<queue> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define MAXN 200100 using namespace std; queue<int>que; int n,m,q; int tot=1; int num,ans; int src,decc; int map[45][45]; int cur[MAXN],lev[MAXN],vis[MAXN]; int to[MAXN],cap[MAXN],net[MAXN],head[MAXN]; void add(int u,int v,int w){ to[++tot]=v;net[tot]=head[u];cap[tot]=w;head[u]=tot; to[++tot]=u;net[tot]=head[v];cap[tot]=0;head[v]=tot; } bool bfs(){ for(int i=src;i<=decc;i++){ cur[i]=head[i]; lev[i]=-1; } while(!que.empty()) que.pop(); que.push(src);lev[src]=0; while(!que.empty()){ int now=que.front(); que.pop(); for(int i=head[now];i;i=net[i]) if(lev[to[i]]==-1&&cap[i]){ lev[to[i]]=lev[now]+1; que.push(to[i]); if(to[i]==decc) return true; } } return false; } int dinic(int now,int flow){ if(now==decc) return flow; int delate,rest=0; for(int & i=cur[now];i;i=net[i]) if(lev[to[i]]==lev[now]+1&&cap[i]){ delate=dinic(to[i],min(cap[i],flow-rest)); if(delate){ rest+=delate; cap[i]-=delate; cap[i^1]+=delate; if(rest==flow) break; } } if(rest!=flow) lev[now]=-1; return rest; } int main(){ scanf("%d%d%d",&n,&m,&q); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&map[i][j]); src=0;decc=m+n*n+1; for(int i=1;i<=m;i++){ int x,y,z; scanf("%d%d%d",&x,&y,&z); add(src,i,5); for(int j=x;j<=min(x+z-1,n);j++) for(int k=y;k<=min(y+z-1,n);k++) if(map[j][k]) add(i,m+(j-1)*n+k,1); } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(map[i][j]) num++,add(m+(i-1)*n+j,decc,1); while(bfs()) ans+=dinic(src,0x7f7f7f7f); cout<<min(num,ans+q); }