The Singleton pattern

作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。


单例模式的结构

  单例模式的特点:

  • 单例类只能有一个实例。
  • 单例类必须自己创建自己的唯一实例。
  • 单例类必须给所有其他对象提供这一实例。

  饿汉式单例类

复制代码
public class EagerSingleton {
private static EagerSingleton instance = new EagerSingleton();
/**
* 私有默认构造子
*/
private EagerSingleton(){}
/**
* 静态工厂方法
*/
public static EagerSingleton getInstance(){
return instance;
}
}
复制代码

  上面的例子中,在这个类被加载时,静态变量instance会被初始化,此时类的私有构造子会被调用。这时候,单例类的唯一实例就被创建出来了。

  饿汉式其实是一种比较形象的称谓。既然饿,那么在创建对象实例的时候就比较着急,饿了嘛,于是在装载类的时候就创建对象实例。

private static EagerSingleton instance = new EagerSingleton();

  饿汉式是典型的空间换时间,当类装载的时候就会创建类的实例,不管你用不用,先创建出来,然后每次调用的时候,就不需要再判断,节省了运行时间。

 

  懒汉式单例类

复制代码
public class LazySingleton {
private static LazySingleton instance = null;
/**
* 私有默认构造子
*/
private LazySingleton(){}
/**
* 静态工厂方法
*/
public static synchronized LazySingleton getInstance(){
if(instance == null){
instance = new LazySingleton();
}
return instance;
}
}
复制代码

  上面的懒汉式单例类实现里对静态工厂方法使用了同步化,以处理多线程环境。
  懒汉式其实是一种比较形象的称谓。既然懒,那么在创建对象实例的时候就不着急。会一直等到马上要使用对象实例的时候才会创建,懒人嘛,总是推脱不开的时候才会真正去执行工作,因此在装载对象的时候不创建对象实例。

private static LazySingleton instance = null;

  懒汉式是典型的时间换空间,就是每次获取实例都会进行判断,看是否需要创建实例,浪费判断的时间。当然,如果一直没有人使用的话,那就不会创建实例,则节约内存空间

  由于懒汉式的实现是线程安全的,这样会降低整个访问的速度,而且每次都要判断。

 

 

/**************************演示下饿汉子*****************************************/
public class SingletonDemo {

public static void main(String[] args) {
/*Singleton test=new Singleton();*///构造方法私有,外部就不能调用产生对象,所以要使用类方法
Singleton.getInstance();
}

}
class Singleton{
private static Singleton singleton=new Singleton();//这里为什么要加static?因为静态方法不能直接访问外部非静态成员变量,so...
private Singleton(){//构造方法私有private
System.out.println("Singleton被实例化");

}
public static Singleton getInstance(){//对开公开一个方法扔出去,为什么要加static?普通方法通过对象名.方法名调用,类方法通过类名.方法名调用
return singleton;
}
}

/**************************演示下懒汉子*****************************************/

public class SingletonDemo {

public static void main(String[] args) {
/*Singleton test=new Singleton();*///构造方法私有,外部就不能调用产生对象,所以要使用类方法
Singleton.getInstance();
}

}
class Singleton{
//private static Singleton singleton=new Singleton();//这里为什么要加static?因为静态方法不能直接访问外部非静态成员变量,so...
private static Singleton singleton=null;
private Singleton(){//构造方法私有private
System.out.println("Singleton被实例化");
}
public static Singleton getInstance(){//对开公开一个方法扔出去,为什么要加static?普通方法通过对象名.方法名调用,类方法通过类名.方法名调用
if(singleton==null){//当调用这个方法的时候,先判断对象存在不存在,如果为null,则产生一个对象,当再调用这个方法的时候,因为是Static变量,已经存在了,全局共享,所以直接返回这个对象
singleton=new Singleton();
}
return singleton;
}
}

转载于:https://www.cnblogs.com/Manbestrong/p/6101043.html

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值