Playing with String(codeforces 305E)

本文介绍了一种基于SG函数的暴力转移方法,用于解决一类特定的字符串分割问题。通过枚举断点来寻找最优解,并利用连续相等字符的特性进行优化。最终实现了先手必胜的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:刚开始你只有一个字符串每次能选择一个有的字符串 s,找到 i,满足s[i - 1] = s[i + 1],将其分裂成 3 个字符串s[1 · · · i - 1]; s[i]; s[i + 1 · · · len]不能操作者负,求先手必胜的一个策略
初始字符串长度不超过 5000

/*
    一个很暴力的转移方法设SG[i][j],每次枚举断点,但是这样是O(n^3)的。
    其实我们可以发现,只有一段连续的符合s[i-1]=s[i+1]的字符串才能有贡献,所以可以设SG[len]来进行转移。 
*/
#include<cstdio>
#include<cstring>
#define N 5010
using namespace std;
int sg[N],bo[N],id;char s[N];
int getsg(int len){
    if(sg[len]!=-1) return sg[len];
    ++id;
    bo[getsg(len-2)]=id;
    for(int i=1;i+i<len;i++)
        bo[getsg(i-1)^getsg(len-i-2)]=id;
    for(int i=0;i<N;i++) if(bo[i]!=id) return sg[len]=i;
}
int getans(int l,int r){
    int sum=0;
    for(int i=l+1;i<=r-1;i++)
        if(s[i+1]==s[i-1]){
            int len=0;
            while(s[i+1]==s[i-1]&&i<=r-1) i++,len++;
            sum^=sg[len];
        }
    return sum;
}
int main(){
    memset(sg,-1,sizeof(sg));
    sg[0]=0,sg[1]=1;
    for(int i=2;i<N;i++)
        if(sg[i]==-1) sg[i]=getsg(i);
    while(scanf("%s",s)!=EOF){
        bool flag=0;int len=strlen(s);
        for(int i=1;i<len-1;i++){
            if(s[i-1]!=s[i+1]) continue;
            if(getans(0,i-1)^getans(i+1,len-1)) continue;
            printf("First\n%d\n",i+1);flag=1;break;
        }
        if(!flag) puts("Second");
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/harden/p/6653815.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值