HDU 4405 期望DP

期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的。。

题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点。求走到n或超出n期望掷色子次数


SOL:

    期望DP还是显然的,从后往前推也是显然的——这个题目能比较好地理解为什么要从后往前推。概率DP每个状态都在当前已知的概率下推出——最基本事件的概率往往都是已知的,而期望不同,从头开始,头的期望步数是根本不可知的,一旦遇上不可行状态极难处理,而从后往前推,最后一个状态的期望一般均为0,而它是由在它之前的状态转移而来,那么前面状态就可以更新了——

    ——例如本题,E[i]表示从第i个格子到第n个格子的期望步数,那么dp[n]显然等于0,而对于第i个点,它下一步可能的方向是i+1~6,那么根据概率的那什么公式累加已推出的点乘上概率——因为转移是要掷色子的所以还要再加上一。

   然而对于直接相连的两个点怎么考虑呢,对于相对位置靠前的那个点——它只能到下一个点,那么它的期望直接就传过来了。。连加一都不需要...所以期望&概率题需要考虑清楚状态之间的关系——保证DP的正确。


code:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cstring>
#define ll long long
double dp[100005];
int vis[100005];

int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF){
        if((n+m)==0)break;
        memset(vis,-1,sizeof(vis));
        for(int i=1;i<=m;i++){
            int a,b;
            scanf("%d%d",&a,&b);
            vis[a]=b;
        }
        memset(dp,0,sizeof(dp));
        for(int i=n-1;i>=0;i--){
            if(vis[i]==-1){
                for(int j=1;j<=6;j++){
                    dp[i]+=dp[i+j]/6.0;
                }
                dp[i]+=1;
            }
            else
                 dp[i]=dp[vis[i]];
        }
        printf("%.4lf\n",dp[0]);
    }
    return 0;
}



 

转载于:https://www.cnblogs.com/YCuangWhen/p/5188085.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值