web服务器优化:
1.提高并发量 负载均衡(分布式服务架构)并发量更高的软件例如nginx 2.页面静态化 不经常发生数据变动的动态网页生成静态网页,提高访问速度 3.内存缓存优化 把数据缓存到内存中,提高数据相应速度 4.数据库优化 一般数据读写频繁,可以缓存到内存中。但是内存容量有限,不能够把大量数据缓存,所有优化数据库软件本身是很有必要的。
Mysql优化:
1.存储层 存储引擎 列类型选择 范式(三范式) 2.设计层 索引 缓存 分区表 3.sql层 使用执行效率高的sql语句 explain执行计划 慢查询日志记录 4.架构层 分布式数据库架构 使用多台数据库服务器,解决数据库访问并发的问题 主从复制 从服务器复制主服务器数据
存储引擎方面:
myisam
文件结构方面:.frm 结构文件 .myd数据文件 .myi索引文件
数据存储顺序,是插入顺序没有进行排序操作
innodb
文件结构 .frm结构文件 数据和索引在一个文件里,可以选择把innodb的数据和索引文件,根据表名称进行分离。在创建表的时候,就进行分离。
临时设置分离
mysql > show variables like 'innodb_file_per_table';
开启
mysql > set global innodb_file_per_table=1;
文件结构就成了 .frm 结构文件 .ibd 数据和索引文件
数据存储顺序,是根据主键进行排序操作
还有事务和外键功能
并发性好 innodb在进行并发操作时,为了数据的一致性,可以使用行锁机制(锁表粒度)。影响数据只为当前行。并发性较好一些。
mysiam 读写比较好 innodb 并发性好
类型的选择:
选取占据空间小的字段,占用小,数据查询遍历就会快速。
内容长度固定字段 整型存储
数据库按照三范式进行设计:
范式是一种规范或者约束。如果设计的数据库表是符合范式的,被认为是良好的数据设计。
第一范式 数据字段具有原子性,业务上不可再分割。
第二范式 数据具有唯一性(主键id)。
第三范式 数据字段和主键具有紧密联系,不允许出现冗余(rong[重复])字段
逆(反)范式
真实业务的环境,为了能够实现更好的数据库表的性能,会选择不遵守范式的操作。
遵守第三范式,查询数据,需要连表操作,如果数据表数据很多,连表操作,会耗费大量时间。为了提高查询效率。可以选择把数据字段存储到同一个表中。
建立了冗余字段之后,一定要注意维护数据的一致性。
索引方面:
索引是一种数据结构(存储数据的方式),存储字段值的内容和对应真实数据的物理地址。
查询数据通过索引查询到物理地址,再通过物理地址直接定位数据。
索引是一种以空间换取时间的方式,牺牲了写的速度,提高查询速度。
为什么使用索引后速度会变快:
之前查询数据需要遍历整个数据表
建立索引之后,查询变为:
查询字段=>索引=>物理地址=>真实数据
一小部分,后面补充~