package iie.udps.example.operator.spark;
import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.Time;
import java.io.File;
import java.io.IOException;
import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.List;
import com.google.common.io.Files;
import org.apache.spark.api.java.JavaPairRDD;
import com.google.common.base.Optional;
/**
* To run this on your local machine, you need to first run a Netcat server
*
* `$ nc -lk 9999`
*
* and run the example as
*
* spark-submit --class iie.udps.example.operator.spark.JavaNetworkWordCount
* --master local /home/xdf/test2.jar localhost 9999 /user/test/checkpoint/
* /home/xdf/outputFile /home/xdf/totalOutputFile
*
* 此示例接收Netcat server产生的数据,进行WordCount操作,分别输出当前结果和历史结果到本地文件中
*/
public final class JavaNetworkWordCount {
@SuppressWarnings("serial")
public static void main(String[] args) {
if (args.length != 5) {
System.err.println("You arguments were " + Arrays.asList(args));
System.err
.println("Usage: JavaNetworkWordCount <hostname> <port> <checkpoint-directory>\n"
+ " <output-file> <total-output-file>. <hostname> and <port> describe the TCP server that Spark\n"
+ " Streaming would connect to receive data. <checkpoint-directory> directory to\n"
+ " HDFS-compatible file system which checkpoint data <output-file> file to which\n"
+ " the word counts will be appended\n"
+ " <total-output-file> file to which the total word counts will be appended\n"
+ "\n"
+ "In local mode, <master> should be 'local[n]' with n > 1\n"
+ "Both <checkpoint-directory> and <output-file> and <total-output-file> must be absolute paths");
System.exit(1);
}
final String checkpointDirectory = args[2]; // 检查点目录
final String curOutputPath = args[3];// 输出当前WordCount结果的路径
final String totalOutputPath = args[4];// 输出全部累计WordCount结果的路径
System.out.println("Creating new context");
final File curOutputFile = new File(curOutputPath);
if (curOutputFile.exists()) {
curOutputFile.delete();
}
final File totalOutputFile = new File(totalOutputPath);
if (totalOutputFile.exists()) {
totalOutputFile.delete();
}
// Create a StreamingContext
SparkConf conf = new SparkConf().setAppName("NetworkWordCount");
final JavaStreamingContext jssc = new JavaStreamingContext(conf,
new Duration(1000));
jssc.checkpoint(checkpointDirectory);
// Create a DStream that will connect to hostname:port, like
// localhost:9999
JavaReceiverInputDStream<String> lines = jssc.socketTextStream(args[0],
Integer.parseInt(args[1]));
// Split each line into words
JavaDStream<String> words = lines
.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String x) {
return Arrays.asList(x.split(" "));
}
});
// Count each word in each batch
JavaPairDStream<String, Integer> pairs = words
.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s)
throws Exception {
return new Tuple2<String, Integer>(s, 1);
}
});
JavaPairDStream<String, Integer> runningCounts = pairs
.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2)
throws Exception {
return i1 + i2;
}
});
runningCounts
.foreachRDD(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
@Override
public Void call(JavaPairRDD<String, Integer> rdd, Time time)
throws IOException {
String counts = "Counts at time " + time + " "
+ rdd.collect();
System.out.println(counts);
System.out.println("Appending to "
+ curOutputFile.getAbsolutePath());
Files.append(counts + "\n", curOutputFile,
Charset.defaultCharset());
return null;
}
});
Function2<List<Integer>, Optional<Integer>, Optional<Integer>> updateFunction = new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
@Override
public Optional<Integer> call(List<Integer> values,
Optional<Integer> state) {
Integer newSum = state.or(0);
for (Integer i : values) {
newSum += i;
}
return Optional.of(newSum);
}
};
JavaPairDStream<String, Integer> TotalCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).updateStateByKey(updateFunction);
TotalCounts
.foreachRDD(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
@Override
public Void call(JavaPairRDD<String, Integer> rdd, Time time)
throws IOException {
String counts = "Counts at time " + time + " "
+ rdd.collect();
System.out.println(counts);
System.out.println("Appending to "
+ totalOutputFile.getAbsolutePath());
Files.append(counts + "\n", totalOutputFile,
Charset.defaultCharset());
return null;
}
});
jssc.start(); // Start the computation
jssc.awaitTermination(); // Wait for the computation to terminate
System.exit(0);
}
}