leetcode find kth

#include <iostream>
#include <vector>

using namespace std;

// 不是一直在查找中值,而是一直查找前k个值,每次去掉一部分值,k也相应减小,直到减到1为止,这样就可以算出结果
// time complexity O(log(m+n))  space complexity O(log(m+n))
class Solution
{
public:
    double findMedianSortedArrays(const vector<int>& A, const vector<int>& B)
    {
        const int m=A.size();
        const int n=B.size();
        int total = m+n;
        if (total & 0x1)          // 按位与, 判断奇偶    total为奇数
            return find_kth(A.begin(), m, B.begin(), n, total/2+1);          // 奇数找到中间值就行
        else                      // total 为偶数
            return (find_kth(A.begin(), m, B.begin(), n, total/2)
                    +find_kth(A.begin(), m, B.begin(), n, total/2+1))/2.0;   //  偶数找到中间的两个值/2.0
    }

private:
    static int find_kth(std::vector<int>::const_iterator A, int m, std::vector<int>::const_iterator B, int n, int k)  //调用这个函数不会访问或者修改任何对象(非static)数据成员
    {
        //always assume that m is equal or smaller than n
        if (m>n)
            return find_kth(B, n, A, m, k);
        if (m==0)
            return *(B+k-1);      // B的median
        if (k==1)
            return min(*A, *B);   // 找最小值, 这个排序从小往大排序,第一位就是最小值 已经能定位中值了

        //divide k into two parts
        int ia=min(k/2, m), ib=k-ia;   // 在这可以看出为啥假设m is equal or smaller than n   A中取k/2或是全取, 然后B中取补齐k个元素
        if (*(A+ia-1)<*(B+ib-1))       // 比较所取的最大值, 如果最大值A<B,则将A的前ia个数抛弃, A>B,则抛弃B的前ib个值,如果两个值相等,则找到了第k个值
            return find_kth(A+ia, m-ia, B, n, k-ia);
        else if(*(A+ia-1) > *(B+ib-1))
            return find_kth(A, m, B+ib, n-ib, k-ib);
        else
            return A[ia-1];
    }
};


int main()
{
    vector<int> a = {1,3};
    vector<int> b = {2};
    Solution s;
    double result;
    result = s.findMedianSortedArrays(a, b);
    cout << result << endl;
//    cout << (1&0x1) << endl;
//    cout << (2&0x1) << endl;
}

转载于:https://www.cnblogs.com/o-v-o/p/9979922.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值