【2012天津区域赛】部分题解 hdu4431—4441

1001:

题意:
给你13张麻将牌,问可以胡哪些张

思路:

枚举可能接到的牌,然后dfs判断能否胡

 

1002:

题意:

已知n,m 求 n的所有约数在m进制下的平方和

做法:
队长用java高精度写的

代码:

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.PrintWriter;
import java.io.ObjectInputStream.GetField;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Scanner;

public class Main {
    
    static BigInteger getSum(int i, int base){
        BigInteger ans= BigInteger.ZERO;
        BigInteger divider = BigInteger.valueOf(i);
        String s = divider.toString(base);

        for (int j = 0; j < s.length(); j++) {
            BigInteger k = new BigInteger(s.substring(j, j + 1),
                    base);
            ans = k.multiply(k).add(ans);
        }
        return ans;
    }
    
    public static void main(String[] args) {
        Scanner cin = new Scanner(new BufferedInputStream(System.in));
        PrintWriter cout = new PrintWriter(new BufferedOutputStream(System.out));

        while (cin.hasNext()) {
            int n = cin.nextInt();
            int base = cin.nextInt();

            BigInteger ans = BigInteger.ZERO;
            for (int i = 1; i * i <= n; i++){
                if (n % i == 0) {
                    // i是divider
                    ans = ans.add(getSum(i, base));
                    if(i*i!=n)
                        ans = ans.add(getSum(n/i, base));
                }
                
            }
            cout.println(ans.toString(base).toUpperCase());
        }
            
        

        cin.close();
        cout.close();
    }

}
View Code

 

1003:

题意:
给定一串数,每次有三种操作:

1.把当前数加/减1

2.当前数和后面一个数加/减1

3.当前数和后面两个数加/减1

(加减完后的结果是在0~9循环的)

求把当前状态变到目标状态需要的最小操作数

做法:

处理到每个数的时候最多对后面两个数产生影响,因此十进制最多有 10^2=100 种情况,可以全部存下
可以进行dp,dp[i][j]表示前i个数已经达到目标状态 ,第i+1个数和第i+2个数的被操作情况为j(状压一下)的最小操作数,转移只需要枚举三种操作的次数即可

代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define inf 100000
int mod(int x)
{
    if(x>=0)
        return x%10;
    else
        return (10+x%10)%10;
}
char s[1010];
char to[1010];
int dp[1010][1010];
int num[3];
int tmp[3];
int p[3]= {1,20,400};
int main()
{
    while(scanf("%s%s",s+1,to+1)!=EOF)
    {
        memset(dp,0x3f,sizeof(dp));
        dp[0][210]=0;
        int n=strlen(s+1);
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<400; j++)
            {
                if(dp[i-1][j]>=inf)
                    continue;
                for(int k=0; k<2; k++)
                {
                    num[k]=(j%p[k+1])/p[k];
                }
                int cha=mod(to[i]-s[i]-(num[0]-10));
                for(int a=0; a<=cha; a++)
                {
                    for(int b=0; a+b<=cha; b++)
                    {
                        int c=cha-a-b;
                        tmp[0]=num[1]-10+b+c;
                        tmp[0]=tmp[0]%10+10;
                        tmp[1]=c+10;
                        dp[i][tmp[0]+tmp[1]*20]=min(dp[i][tmp[0]+tmp[1]*20],dp[i-1][j]+cha);
                    }
                }
                cha=10-cha;
                for(int a=0; a<=cha; a++)
                {
                    for(int b=0; a+b<=cha; b++)
                    {
                        int c=cha-a-b;
                        tmp[0]=10-(20-num[1]+b+c)%10;
                        tmp[1]=10-c;
                        dp[i][tmp[0]+tmp[1]*20]=min(dp[i][tmp[0]+tmp[1]*20],dp[i-1][j]+cha);
                    }
                }
            }
        }
        //printf("%d\n",dp[1][9+9*20]);
        //printf("%d\n",dp[2][9+10*20]);
        printf("%d\n",dp[n][210]);
    }
    return 0;
}
View Code


 

1005:

题意:

一个图有n个点,初始在点1,每次加满油后最多能跑d距离,现在点1有一个加油站,问环游全程回到1需要怎么建加油站

第i点建加油站的话 二进制第i位为1,答案要满足建造情况的二进制数最小

做法:

贪心,要尽量要高位的点不建,先假设所有点建了,再从大到小考虑,如果当前点不建也能满足需求,则把该点加油站删去

因为要考虑连通性所以判断是否满足需求要用bfs

代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
#include<queue>
#include<math.h>
using namespace std;
int g[150][150];
int x[150];
int y[150];
int vi[150];
int vis[150];
int n,d;
queue<int>q;
int check()
{
    memset(vis,0,sizeof(vis));
    while(!q.empty())
        q.pop();
    q.push(0);
    while(!q.empty())
    {
        int now=q.front();
        vis[now]=1;
        q.pop();
        for(int i=0;i<n;i++)
        {
            if(!vis[i])
            {
                if(g[now][i]<=d/2)
                {
                    vis[i]=1;
                }
                if(g[now][i]<=d&&vi[i])
                {
                    q.push(i);
                }
            }
        }
    }
    for(int i=0;i<n;i++)
    {
        if(vis[i]==0)
            return 0;
    }
    return 1;
}
int main()
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d",&n,&d)!=EOF)
    {
        for(int i=0;i<n;i++)
        {
            vi[i]=1;
        }
        for(int i=0; i<n; i++)
        {
            scanf("%d%d",x+i,y+i);
        }
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                g[i][j]=ceil(sqrt((double)((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]))));
            }
        }
        if(check()==0)
        {
            puts("-1");
            continue;
        }
        for(int i=n-1; i>=1; i--)
        {
            vi[i]=0;
            if(!check())
                vi[i]=1;
        }
        int f=1;
        for(int i=n-1; i>=0; i--)
        {
            if(vi[i])
            {
                printf("1");
                f=0;
            }
            else
            {
                if(f==0)
                    printf("0");
            }
        }
        puts("");

    }
    return 0;
}
View Code

 

1006:

 题意: n个字符串,对于每一个子串可以表示为一个数字, 求所有子串的数字和相加对2012取模,, 相同数字只算一次。

 

这题可以先把n个字符串用一个没有出现过的字符隔开连起来。然后求sa, lcp。

我们可以先看一个简单的例子。

s = 12345

num[1] = 1             sum[1] = 1

num[2] = 12           sum[2] = 1 + 12

num[3] = 123         sum[3] = 1 + 12 + 123

num[4] = 1234       sum[4] = 1 + 12 + 123 + 1234 

num[5] = 12345     sum[5] = 1 + 12 + 123 + 1234 + 12345

如果求[3, 4]  , 只需要 sum[5] - sum[2] - num[2] * (10 + 100 + 1000);

判重时 只要从 i+ lcp[rank[i]]  开始算就可以了,,因为公共前缀那一部分 在前面已经算了。

上代码。。

  1 #include <set>
  2 #include <map>
  3 #include <cmath>
  4 #include <ctime>
  5 #include <queue>
  6 #include <stack>
  7 #include <cstdio>
  8 #include <string>
  9 #include <vector>
 10 #include <cstdlib>
 11 #include <cstring>
 12 #include <iostream>
 13 #include <algorithm>
 14 using namespace std;
 15 typedef unsigned long long ull;
 16 typedef long long ll;
 17 const int inf = 0x3f3f3f3f;
 18 const double eps = 1e-8;
 19 const int mod = 2012;
 20 const int maxn = 2e5+100;
 21 int sum [maxn], num[maxn];
 22 string s;
 23 int sa[maxn], Rank[maxn], tmp[maxn], lcp[maxn];
 24 int k, len;
 25 bool cmp(int i, int j)
 26 {
 27     if (Rank[i] != Rank[j])
 28         return Rank[i] < Rank[j];
 29     else
 30     {
 31         int x = (i+k <= len ? Rank[i+k] : -1);
 32         int y = (j+k <= len ? Rank[j+k] : -1);
 33         return x < y;
 34     }
 35 }
 36 void build_sa()
 37 {
 38     for (int i = 0; i <= len; i++)
 39     {
 40         sa[i] = i;
 41         Rank[i] = (i < len ? s[i] : -1);
 42     }
 43     for (k = 1; k <= len; k *= 2)
 44     {
 45         sort (sa,sa+len+1,cmp);
 46         tmp[sa[0]] = 0;
 47         for (int i = 1; i <= len; i++)
 48         {
 49             tmp[sa[i]] = tmp[sa[i-1]] + (cmp(sa[i-1],sa[i])? 1 : 0);
 50         }
 51         for (int i = 0; i <= len; i++)
 52             Rank[i] = tmp[i];
 53     }
 54 }
 55 
 56 void Get_lcp()
 57 {
 58     for (int i = 0; i < len; i++)
 59         Rank[sa[i]] = i;
 60     int h = 0;
 61     lcp[0] = 0;
 62     for (int i = 0; i < len; i++)
 63     {
 64         int j = sa[Rank[i]-1];
 65         if (h > 0)
 66             h--;
 67         for (; h+i < len && h+j < len; h++)
 68             if (s[i+h] != s[j+h])
 69                 break;
 70         lcp[Rank[i]] = h;
 71     }
 72 }
 73 bool isdigit(char &ch)
 74 {
 75     return ch >= '0' && ch <= '9';
 76 }
 77 int vec[maxn], board[maxn], tot;
 78 int SUM[maxn];
 79 int solve (int l, int r)
 80 {
 81     if (l > r)
 82         return 0;
 83     int res ;
 84     res = sum[r] - sum[l-1];
 85     res = ((res%mod)+mod)%mod;
 86     res -= num[l-1] * SUM[r-l+1];
 87     res = ((res%mod)+mod)%mod;
 88     return ((res%mod)+mod)%mod;
 89 }
 90 int main()
 91 {
 92 #ifndef ONLINE_JUDGE
 93     freopen("in.txt","r",stdin);
 94 #endif
 95     int n;
 96     SUM[1] = 10;
 97     for (int i = 2; i < maxn; i++)
 98     {
 99         SUM[i] = (SUM[i-1] + 1) * 10 % mod;
100     }
101     while (~scanf ("%d", &n))
102     {
103         s = "\0";
104         tot = 0;
105         memset(sum, 0, sizeof(sum));
106         memset(num, 0, sizeof(num));
107         for (int i = 0; i < n; i++)
108         {
109             string tmp;
110             cin >> tmp;
111             s += tmp + "#";
112         }
113         len = s.size();
114         int val = 0;
115         for (int i = 0; i < len; i++)
116         {
117             if (s[i] != '#')
118             {
119                 val = (val * 10 + s[i] - '0') % mod;
120                 num[i] = val;
121                 sum[i] = (sum[i-1] + num[i]) % mod;
122                 board[i] = tot;
123             }
124             if (s[i] == '#')
125             {
126                 vec[tot++] = i;
127                 num[i] = val;
128                 sum[i] = sum[i-1] + val;
129             }
130         }
131         build_sa();
132         Get_lcp();
133         int ans = 0;
134         for (int i = 0; i < len; i++)
135         {
136             int t1 = i + lcp[Rank[i]];
137             if (s[i] == '0')
138                 continue;
139             if (isdigit(s[i]) && i+lcp[Rank[i]] < vec[board[i]])
140             {
141                 int t2 = vec[board[i]] -1;
142                 int ans1 = solve(i, t2);
143                 int ans2 = solve(i , t1-1);
144                 ans = (ans + solve(i, t2) - solve(i, t1-1)) % mod;
145                 if (ans < 0)
146                     ans += mod;
147             }
148         }
149         printf("%d\n", ans%mod);
150     }
151     return 0;
152 }
View Code

 

1008:

题意:

很简单的高中数学签到题

思路:

代码:

#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-8;
double x, y;
double p, q;
double fun1()
{
    double a1 = q*p*p*(x+y);
    double a2 = q*p*(1-p)*x;
    double a3 = q*p*(1-p)*y;
    double a4 = (1-q)*x;
    return a1+a2+a3+a4;
}
double fun2()
{
    double a1 = (1-q) * p*p*(x+y);
    double a2 = (1-q)*p*(1-p)*x;
    double a3 = (1-q)*p*(1-p)*y;
    double a4 = (q)*y;
    return a1+a2+a3+a4;;
}
int main()
{

    int t;
    cin>>t;
    while (t--)
    {
        scanf ("%lf%lf%lf%lf",&x, &y, &p, &q);
        if (fun1() > fun2())
        {
            printf("tiger %.4f\n", fun1());
        }
        else
            printf("wolf %.4f\n", fun2());
    }
    return 0;
}
View Code

 

1011:

转载于:https://www.cnblogs.com/oneshot/p/4398126.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值