因式分解

本文详细介绍了因式分解的基本概念、定义、相关结论,以及包括提公因式法、公式法、十字相乘法在内的多种分解方法,强调了在实数和复数范围内的因式分解特性,并提供了因式分解的应用实例。
摘要由CSDN通过智能技术生成

Table of contents

  1. 基本概念
    1. 定义
    2. 相关结论
  2. 一般步骤
  3. 原则
  4. 基本方法
    1. 提公因式法
    2. 公式法
    3. 十字相乘法
    4. 双十字相乘法
    5. 解方程法
    6. 分组分解法
    7. 拆项补项法
    8. 配方法
    9. 因式定理法
    10. 换元法
    11. 主元法
    12. 特殊值法
    13. 待定系数法
    14. 总结
  5. 简单应用

基本概念

定义

   把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
  因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。
  因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。
 

相关结论:

  • 基本结论:分解因式与整式乘法为相反。
  • 高级结论:在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。
  1. 因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值