题意 给定$2*10^{5}$组询问,每个询问求$l$到$r$之间有多少个符合条件的数
如果一个数小于等于$10^{15}$, 并且能被分割成一个至少有$3$项的递增等比数列(公比可以不为整数)
那么这个数是符合条件的。
比赛的时候我大概觉得这应该不是数位DP,是一个比较trick的枚举题。
但是我总感觉哪个地方不太对,或者说是没有写这道题的意识,一直瘫在那里。
今天AC了这个题之后真的后悔莫及,但是一点用都没有。
从至少有$3$项这个条件入手。
假设数列只有$3$项。
因为数列递增,所以第二项一定不超过$10^{5}$,
所以等比数列的公比
$\frac{q}{p} <= \frac{a_{2}}{a_{1}} <= a_{2} <= 10^{5}$
设第一项为$kp^{2}$, 第二项为$kpq$, 第三项为$kq^{2}$
那么$kpq <= 10^{5}$,即$pq <= 10^{5}$;
枚举符合条件的$p$和$q$,发现枚举量不超过$4*10^{5}$;
在这个基础上枚举$k$,然后求出整个数列,并考虑那些项数大于$3$的数列,
最后sort一下二分查找就可以了。
#include <ctime>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
typedef long long LL;
const int N = 1e5 + 10;
LL a[N * 100];
LL ten[20];
LL l, r;
int cnt = 0;
int T, ca = 0;
int solve(LL x){ return upper_bound(a + 1, a + cnt + 1, x) - a - 1; }
inline int calc(LL x){
int ret = 0;
for (; x; x /= 10) ++ret;
return ret;
}
LL mer(LL x, LL y){ return x * ten[calc(y)] + y; }
int main(){
ten[0] = 1ll;
rep(i, 1, 18) ten[i] = ten[i - 1] * 10ll;
rep(p, 1, 1e5){
rep(q, p + 1, 1e5){
if (1ll * p * q >= 1e5) break;
if (__gcd(p, q) > 1) continue;
rep(k, 1, 1e5 / p / q){
LL x = 1ll * k * p * p;
LL y = 1ll * k * p * q;
LL z = 1ll * k * q * q;
int cnt_len = calc(x) + calc(y) + calc(z);
if (cnt_len > 15) break;
LL now = mer(mer(x, y), z);
a[++cnt] = now;
while (true){
if (calc(z) >= 9) break;
if (z * z % y > 0) break;
LL nw = z * z / y;
int nwlen = calc(nw);
if (cnt_len + nwlen > 15) break;
cnt_len += nwlen;
now = mer(now, nw);
a[++cnt] = now;
y = z;
z = nw;
}
}
}
}
sort(a + 1, a + cnt + 1);
scanf("%d", &T);
while (T--){
scanf("%lld%lld", &l, &r);
printf("Case #%d: %d\n", ++ca, solve(r) - solve(l - 1));
}
return 0;
}