题解
题目链接:点我
题目大意:
给出一个有理数c=a/b,求c mod 19260817 的值。
输入格式
一共两行。
第一行,一个整数 aaa 。
第二行,一个整数 bbb 。
输出格式
一个整数,代表求余后的结果。如果无解,输出Angry!
数据范围
0<=a,b<=10^10001
解题思路:
这是高精度???不不不,高精度会码死去。
那用什么?你见过有理数取模吗?我们可以转换一下,
c=a*b^(-1),那这道题不就变成裸的求逆元了吗?但是怎么输入呢?先用字符串读入,在转化成数字的时候取模
就行了,求逆元其实有线性的算法。
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long int
using namespace std;
char al[10005],bl[10005];
ll a,b,c,m=19260817,ans;
int ni[19260819];
int main()
{
scanf("%s",al);
scanf("%s",bl);
ll lena=strlen(al)-1;
ll lenb=strlen(bl)-1;
for(int i=0;i<=lena;i++)
a=((a*10)%m+al[i]-'0')%m;
for(int i=0;i<=lenb;i++)
b=((b*10)%m+bl[i]-'0')%m;
if(b==0){
printf("Angry!");
return 0;
}
ni[1]=1;
for(int i=2;i<=b;i++)
ni[i]=(((-m/i+m)%m)*ni[m%i]+m)%m;
ans=(a*ni[b])%m;
printf("%lld",ans);
return 0;
}
时间复杂度和空间复杂度都不是很优秀....