POJ3468 A Simple Problem With Integers 树状数组 区间更新区间询问

今天学了很多关于树状数组的技巧。一个是利用树状数组可以简单的实现段更新,点询问(二维的段更新点询问也可以),每次修改只需要修改2个角或者4个角就可以了,另外一个技巧就是这题,原本用线段树做,现在可以用树状数组做的题,只需多维护一个bit即可。具体的思路见下面的链接:

http://hi.baidu.com/billdu/item/053f6a15ca301b0a8ebde400

要理解里面的橙色块求的时候是打竖看的,不是打横看的。

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
#include<string>
#define ll long long
#define maxn 100000
#define lowbit(k) k&(-k)
using namespace std;

ll bit[2][maxn + 50];
int n,q;

void inc(ll bit[],int i, int m)
{
	for (; i <= n; i += lowbit(i)) bit[i] += m;
}

ll query(ll bit[],int i)
{
	ll sum = 0;
	for (; i > 0; i -= lowbit(i)){
		sum += bit[i];
	}
	return sum;
}

ll sum[maxn + 50];

int main()
{
	while (cin >> n >> q)
	{
		memset(bit, 0, sizeof(bit));
		for (int i = 1; i <= n; i++){
			scanf("%lld", sum + i);
		}
		sum[0] = 0;
		for (int i = 1; i <= n; i++) sum[i] += sum[i - 1];
		char str[3];
		int a,b,c;
		for (int i = 0; i < q; i++){
			scanf("%s", str);
			if (str[0] == 'Q'){
				scanf("%d%d", &a, &b);
				ll ans = (query(bit[0], b)*(b + 1) - query(bit[1], b)) - (query(bit[0], a - 1)*a - query(bit[1], a - 1));
				ans += sum[b] - sum[a - 1];
				printf("%lld\n", ans);
			}
			else{
				scanf("%d%d%d", &a, &b, &c);
				inc(bit[0], a, c);
				inc(bit[1], a, c*a);
				inc(bit[0], b + 1, -c);
				inc(bit[1], b + 1, -c*(b + 1));
			}
		}
	}
	return 0;
}

 

转载于:https://www.cnblogs.com/chanme/p/3555084.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值