我的电磁学讲义15:互感和自感

本文详细介绍了电磁学中的互感和自感现象,包括互感系数、自感系数的定义、计算公式以及相关示例。通过长直螺线管与短线圈的模型,解释了互感电动势和自感电动势的产生,并探讨了自感磁能和互感磁能在能量转换中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

互感

6b6ebe29jw1eycyw0cdxdj20b8050jrh.jpg
图1 两线圈之间的互感

如图1所示,线圈1中的电流变化时所激发的变化磁场,会在它临近的线圈2中产生感应电动势。同样,线圈2中的电流变化时,也会在线圈1中产生感应电动势。这种现象称为互感现象,所产生的感应电动势称为互感电动势

线圈1所激发的磁场通过线圈2的磁通链匝数\(\Psi_{12}\)与线圈1中的电流\(I_1\)成正比

\begin{equation*} \Psi_{12}=M_{12}I_1 \end{equation*}

同理,线圈2所激发的磁场通过线圈1的磁通链匝数\(\Psi_{21}\)与线圈2中的电流\(I_2\)成正比

\begin{equation*} \Psi_{21}=M_{21}I_2 \end{equation*}

比例系数\(M_{12}\)\(M_{21}\)称为互感系数,简称互感。互感系数由线圈的几何形状、大小、匝数以及线圈之间的相对位置所决定,与电流无关。互感的单位为亨利,符合为\(\mathrm{H}\),纪念美国物理学家约瑟夫·亨利

\begin{equation*} 1\mathrm{H}=1\mathrm{Wb}/\mathrm{A}=1\mathrm{V\cdot s}/\mathrm{A} \end{equation*}

220px-Joseph_Henry_%281879%29.jpg
图2 约瑟夫·亨利肖像

可以证明\(M_{12}\)\(M_{21}\)大小相等:

\begin{equation*} M_{12}=M_{21}=M \end{equation*}

这个结果不是显然的,因为一般来说,两个线圈没有什么对称性。这是倒易关系的一个特例。由于这个倒易关系,互感系数就不用写下标了,也不用特意说明谁对谁的互感系数,直接称互感即可。

两个线圈中产生的互感电动势分别为:

\begin{equation*} \mathcal

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值