互感
图1 两线圈之间的互感
如图1所示,线圈1中的电流变化时所激发的变化磁场,会在它临近的线圈2中产生感应电动势。同样,线圈2中的电流变化时,也会在线圈1中产生感应电动势。这种现象称为互感现象,所产生的感应电动势称为互感电动势。
线圈1所激发的磁场通过线圈2的磁通链匝数\(\Psi_{12}\)与线圈1中的电流\(I_1\)成正比
\begin{equation*} \Psi_{12}=M_{12}I_1 \end{equation*}
同理,线圈2所激发的磁场通过线圈1的磁通链匝数\(\Psi_{21}\)与线圈2中的电流\(I_2\)成正比
\begin{equation*} \Psi_{21}=M_{21}I_2 \end{equation*}
比例系数\(M_{12}\)和\(M_{21}\)称为互感系数,简称互感。互感系数由线圈的几何形状、大小、匝数以及线圈之间的相对位置所决定,与电流无关。互感的单位为亨利,符合为\(\mathrm{H}\),纪念美国物理学家约瑟夫·亨利。
\begin{equation*} 1\mathrm{H}=1\mathrm{Wb}/\mathrm{A}=1\mathrm{V\cdot s}/\mathrm{A} \end{equation*}
图2 约瑟夫·亨利肖像
可以证明\(M_{12}\)和\(M_{21}\)大小相等:
\begin{equation*} M_{12}=M_{21}=M \end{equation*}
这个结果不是显然的,因为一般来说,两个线圈没有什么对称性。这是倒易关系的一个特例。由于这个倒易关系,互感系数就不用写下标了,也不用特意说明谁对谁的互感系数,直接称互感即可。
两个线圈中产生的互感电动势分别为:
\begin{equation*} \mathcal