洛谷 P1108 低价购买

P1108 低价购买
标签 动态规划
难度 提高+/省选-
题目描述
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内一支股票每天的出售价(2^16范围内的正整数),你可以选择在哪些天购买这支股票。每次购买都必须遵循“低价购买;再低价购买”的原则。写一个程序计算最大购买次数。
这里是某支股票的价格清单:
日期 1 2 3 4 5 6 7 8 9 10 11 12
价格 68 69 54 64 68 64 70 67 78 62 98 87
最优秀的投资者可以购买最多4次股票,可行方案中的一种是:
日期 2 5 6 10
价格 69 68 64 62
输入输出格式
输入格式:
第1行: N (1 <= N <= 5000),股票发行天数
第2行: N个数,是每天的股票价格。
输出格式:
输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=2^31)当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方案被认为是相同的。
输入输出样例
输入样例#1:
BUYLOW.IN
12
68 69 54 64 68 64 70 67 78 62 98 87
输出样例#1:
BUYLOW.OUT
4 2

/*
第一问是裸的最长下降子序列问题.
第二问求最长下降子序列的构造方案数.
s[i].tot表示到i的最长上升子序列长度.
s[i].x表示到i的最长上升子序列的方案数.
eg:4 2 2 1. 
最长是两个4 2 1 但是这种方案只能统计一次.
显然后边的比前边的更优.
这种情况下为了避免重复计算.
我们把前面的s[].x设为0.
如果s[i].tot==s[j].tot+1&&a[j]>a[i](j<i)
即i是j序列的延续我们由计数原理计算s[i].x+=s[j].x.
最后只需要计算合法的子序列尾部的方案数就可以了. 
*/
#include<iostream>
#include<cstdio>
#define MAXN 5001
using namespace std;
int a[MAXN],n,ans,tot;
struct data{int tot,x;}s[MAXN];
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
    return x*f;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
      a[i]=read();
    for(int i=1;i<=n;i++)
    {
        s[i].tot=1;
        for(int j=1;j<=i-1;j++)
          if(a[i]<a[j])
            s[i].tot=max(s[i].tot,s[j].tot+1);
        if(s[i].tot==1) s[i].x=1;
        for(int j=1;j<=i-1;j++)
          if (s[i].tot==s[j].tot+1&&a[j]>a[i]) s[i].x+=s[j].x; 
          else if(a[j]==a[i]&&s[i].tot==s[j].tot) s[j].x=0; 
        ans=max(ans,s[i].tot);
    }
    for(int i=1;i<=n;i++)
      if(ans==s[i].tot) tot+=s[i].x;
    printf("%d %d",ans,tot);
    return 0;
}

转载于:https://www.cnblogs.com/nancheng58/p/6070758.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值