Gcd HYSBZ - 2818 (莫比乌斯反演)

Gcd

\[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \]

题意

\(gcd\left(x,y\right) = p\) 的对数,其中\(1 \leq x,y \leq n\)\(p\)是质数

思路

\(g\left(x\right)\) 表示 \(gcd\left(a, b\right) | x\) 的对数
\(f\left(x\right)\) 表示 \(gcd\left(a, b\right) = x\) 的对数
根据莫比乌斯反演有
\[ f\left(n\right) = \sum_{n|d} g\left(d\right)\\ g\left(n\right) = \sum_{n|d} \mu\left(\frac{d}{n}\right) f\left(d\right) \\ \]
根据题意
\[ f\left(x\right) = \lfloor\frac{n}{x}\rfloor \lfloor\frac{n}{x}\rfloor \\ \]
那么就可以得到
\[ \begin{aligned} ans &= \sum_{prime(p)} g\left(p\right) \\ &= \sum_{prime(p)} \sum_{p|d} \mu\left(\frac{d}{p}\right) \lfloor\frac{n}{d}\rfloor \lfloor\frac{n}{d}\rfloor \\ \end{aligned} \]
对于每个 \(d\),找到所有满足 \(p|d\)\(prime(p)\),预处理出 \(\sum_{p|d}\mu\left(\frac{d}{p}\right)\)

  • 如果 \(d\) 是质数,容易得到 \(sum[d] = 1\)
  • 如果 \(d\) 不是质数,那么可以把 \(d\) 看成 \(p_{1}^{a1}p_{2}^{a2}...p_{k}^{ak}\),设 \(d = p_{1}x\)
    \[ \begin{aligned} \sum_{p|d} \mu\left(\frac{d}{p}\right) &= \mu\left(\frac{d}{p_{1}}\right)+\mu\left(\frac{d}{p_{2}}\right)+...+\mu\left(\frac{d}{p_{k}}\right)\\ &= \mu\left(x\right) + \mu\left(\frac{p_{1}x}{p_{2}}\right)+...+\mu\left(\frac{p_{1}x}{p_{k}}\right) \\ \sum_{p|x}\mu\left(\frac{x}{p}\right) &= \mu\left(\frac{x}{p_{2}}\right)+...+\mu\left(\frac{x}{p_{k}}\right) \end{aligned} \]
    因为\(p_{k}|d,d=p_{1}x\),则 \(p_{k}|x\)。那么现在的问题就在于 \(p_{1}|x\)
    \(\quad\) 1. 若 \(p1|x\),则对于 \(\left(\frac{p_{1}x}{p_{k}}\right)\),可以发现除完以后,仍然会包括两个及以上 \(p_{1}\) 因子,所以其 \(\mu\) 值为\(0\)
    \(\quad\) 2. 反之,\(\left(\frac{p_{1}x}{p_{k}}\right)\)\(\left(\frac{x}{p_{k}}\right)\)的基础上多了一个 \(p_{1}\) 因子且指数为 \(1\),根据 \(\mu\) 的公式,\(\mu\left(\frac{p_{1}x}{p_{k}}\right) =- \mu\left(\frac{x}{p_{k}}\right)\)
    综合上述
    \[ \sum_{p|d} \mu\left(\frac{d}{p}\right) = \begin{cases} \mu\left(x\right) & p_{1}|x\\ \mu\left(x\right) - \sum_{x|d} \mu\left(\frac{x}{p}\right) &otherwise\\ \end{cases} \]
/***************************************************************
    > File Name    : a.cpp
    > Author       : Jiaaaaaaaqi
    > Created Time : 2019年07月17日 星期三 10时20分16秒
 ***************************************************************/

#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define  lowbit(x)  x & (-x)
#define  mes(a, b)  memset(a, b, sizeof a)
#define  fi         first
#define  se         second
#define  pii        pair<int, int>

typedef unsigned long long int ull;
typedef long long int ll;
const int    maxn = 1e7 + 10;
const int    maxm = 1e5 + 10;
const ll     mod  = 1e9 + 7;
const ll     INF  = 1e18 + 100;
const int    inf  = 0x3f3f3f3f;
const double pi   = acos(-1.0);
const double eps  = 1e-8;
using namespace std;

ll n, m;
int cas, tol, T;

int pri[maxn], mob[maxn];
bool ispri[maxn];
ll sum[maxn];

void handle() {
    mes(sum, 0), mes(pri, 0), mes(ispri, 1);
    tol = 0;
    mob[1] = 1;
    int mx = 1e7;
    for(int i=2; i<=mx; i++) {
        if(ispri[i]) {
            pri[++tol] = i;
            mob[i] = -1;
            sum[i] = 1;
        }
        for(int j=1; j<=tol && i*pri[j]<=mx; j++) {
            ispri[i*pri[j]] = false;
            if(i%pri[j] == 0) {
                mob[i*pri[j]] = 0;
                sum[i*pri[j]] = mob[i];
                break;
            } else {
                mob[i*pri[j]] = -mob[i];
                sum[i*pri[j]] = mob[i] - sum[i];
            }
        }
    }
}

int main() {
    handle();
    printf("%lld %lld %lld\n", sum[12], sum[6], mob[6]);
    scanf("%lld", &n);
    ll ans = 0;
    for(ll d=2; d<=n; d++) {
        ans += 1ll*sum[d]*(n/d)*(n/d);
    }
    printf("%lld\n", ans);
    return 0;
}

转载于:https://www.cnblogs.com/Jiaaaaaaaqi/p/11200791.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值