P4719 【模板】动态dp

\(\color{#0066ff}{ 题目描述 }\)

给定一棵\(n\)个点的树,点带点权。

\(m\)次操作,每次操作给定\(x,y\),表示修改点xx的权值为\(y\)

你需要在每次操作之后求出这棵树的最大权独立集的权值大小。

\(\color{#0066ff}{输入格式}\)

第一行,\(n,m\)分别代表点数和操作数。

第二行,\(V_1,V_2,...,V_n\),代表\(n\)个点的权值。

接下来\(n-1\)行,\(x,y\),描述这棵树的\(n-1\)条边。

接下来\(m\)行,\(x,y\),修改点xx的权值为\(y\)

\(\color{#0066ff}{输出格式}\)

对于每个操作输出一行一个整数,代表这次操作后的树上最大权独立集。

保证答案在int范围内

\(\color{#0066ff}{输入样例}\)

10 10
-11 80 -99 -76 56 38 92 -51 -34 47 
2 1
3 1
4 3
5 2
6 2
7 1
8 2
9 4
10 7
9 -44
2 -17
2 98
7 -58
8 48
3 99
8 -61
9 76
9 14
10 93

\(\color{#0066ff}{输出样例}\)

186
186
190
145
189
288
244
320
258
304

\(\color{#0066ff}{数据范围与提示}\)

对于30%的数据,\(1\le n,m\le 10\)

对于60%的数据,\(1\le n,m\le 1000\)

对于100%的数据,\(1\le n,m\le 10^5\)

\(\color{#0066ff}{ 题解 }\)

动态DP就是带修改的DP
首先,考虑不带修改的DP
对于本题
\(f[i][0]\)为以i为根子树不选i的ans,\(f[i][1]\)为以i为根子树选i的ans
转移
\(f[x][0]=\sum max(f[son][0],f[son][1])\)
\(f[x][1] = \sum f[son][0]+val[x]\)
我们进行树链剖分
定义\(g[x][0/1]\)为以x为根子树,只考虑轻儿子的ans
这个可以跟f一块求出,只有当儿子是轻儿子的时候才用儿子的f转移到当前的g
那么我们改写DP式子

\(f[x][0]=g[x][0]+max(f[son][0],f[son][1])\)

\(f[x][1]=g[x][1]+f[son][0]\)

然后每个点,我们维护一个矩阵,考虑转移

\(\left\{\begin{matrix} f[son][0] \\ f[son][1] \end{matrix}\right\} \to \left\{\begin{matrix} f[x][0] \\ f[x][1] \end{matrix}\right\}\)

由转移式子得出,需要取max和+
所以我们定义 * 为 + , + 为取max
不难推出转移矩阵

\(\left\{\begin{matrix} g[x][0]& g[x][0]\\ g[x][1] & -inf \end{matrix}\right\}\)

因此\(\left\{\begin{matrix} g[x][0]& g[x][0]\\ g[x][1] & -inf \end{matrix}\right\} * \left\{\begin{matrix} f[son][0] \\ f[son][1] \end{matrix}\right\} = \left\{\begin{matrix} f[x][0] \\ f[x][1] \end{matrix}\right\}\)
可以发现,叶子节点的f和g是一样的,而且一条重链,必以叶子节点结束
所以我们按照树链剖分,用线段树维护矩阵的积,每条重链记录一下这条链的链尾的dfn
这样ans=1所在重链的矩阵的积的其中左面两个值的max
考虑修改
对于点x
可以发现,如果x是重儿子,那么所在重链的转移矩阵是毫无影响的
因为矩阵中都是g,而g是轻儿子的ans
那么我们每次只需修改一个点,然后跳到链顶,这时候,链顶的fa的矩阵需要改变
可以在改变前求出链顶矩阵,改变后求出链顶矩阵
然后根据DP式子,找到矩阵的变化量\(\Delta\),其实就是减去原来这个儿子的贡献在加上新的贡献就行了
因为本题的DP都是取\(\sum\),所以直接加减就行了
#include<bits/stdc++.h>
#define LL long long
LL in() {
    char ch; LL x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
const int maxn = 1e5 + 100;
const int inf = 0x3f3f3f3f;
struct Matrix {
    int a[2][2];
    Matrix(int n = 0, int m = 0, int p = 0, int q = 0) {
        a[0][0] = n;
        a[0][1] = m;
        a[1][0] = p;
        a[1][1] = q;
    }
    friend Matrix operator * (const Matrix &c, const Matrix &d) {
        Matrix t(-inf, -inf, -inf, -inf);
        for(int i = 0; i <= 1; i++)
            for(int j = 0; j <= 1; j++) 
                for(int k = 0; k <= 1; k++)
                    t.a[i][j] = std::max(t.a[i][j], c.a[i][k] + d.a[k][j]);
        return t;
    }
    friend Matrix operator + (const Matrix &c, const Matrix &d) {
        return Matrix(c.a[0][0] + d.a[0][0], c.a[0][1] + d.a[0][1], c.a[1][0] + d.a[1][0], c.a[1][1] + d.a[1][1]);
    }
    friend Matrix operator - (const Matrix &c, const Matrix &d) {
        return Matrix(c.a[0][0] - d.a[0][0], c.a[0][1] - d.a[0][1], c.a[1][0] - d.a[1][0], c.a[1][1] - d.a[1][1]);
    }
}val[maxn];
struct Tree {
    int l, r;
    Tree *ch[2];
    Matrix val;
    Tree(int l = 0, int r = 0, Matrix c = Matrix(0, 0, 0, 0)): l(l), r(r), val(c) {
        ch[0] = ch[1] = NULL;
    }
    void *operator new (size_t) {
        static Tree *S = NULL, *T = NULL;
        return (S == T) && (T = (S = new Tree[1024]) + 1024), S++;
    }
    void upd() {
        val = ch[0]->val * ch[1]->val;
    }
};
Tree *root;
struct node {
    int to;
    node *nxt;
    node(int to = 0, node *nxt = NULL): to(to), nxt(nxt) {}
    void *operator new (size_t) {
        static node *S = NULL, *T = NULL;
        return (S == T) && (T = (S = new node[1024]) + 1024), S++;
    }
};
node *head[maxn];
int son[maxn], dep[maxn], siz[maxn], fa[maxn], n, m, c[maxn];
int top[maxn], dfn[maxn], redfn[maxn], e[maxn];
int f[maxn][2], g[maxn][2], cnt;
void add(int from, int to) {
    head[from] = new node(to, head[from]);
}
void dfs1(int x, int ft) {
    fa[x] = ft;
    dep[x] = dep[ft] + 1;
    siz[x] = 1;
    for(node *i = head[x]; i; i = i->nxt) {
        if(i->to == ft) continue;
        dfs1(i->to, x);
        siz[x] += siz[i->to];
        if(!son[x] || siz[i->to] > siz[son[x]]) son[x] = i->to;
    }
}
void dfs2(int x, int t) {
    top[redfn[dfn[x] = ++cnt] = x] = t;
    e[t] = dfn[x];
    if(son[x]) dfs2(son[x], t);
    for(node *i = head[x]; i; i = i->nxt)
        if(!dfn[i->to]) dfs2(i->to, i->to);
}

void dfs3(int x, int ft) {
    f[x][1] = g[x][1] = c[x];
    for(node *i = head[x]; i; i = i->nxt) {
        if(i->to == ft) continue;
        dfs3(i->to, x);
        f[x][1] += f[i->to][0];
        f[x][0] += std::max(f[i->to][0], f[i->to][1]);
        if(i->to != son[x]) {
            g[x][1] += f[i->to][0];
            g[x][0] += std::max(f[i->to][0], f[i->to][1]);
        }
    }
    val[x] = Matrix(g[x][0], g[x][0], g[x][1], -inf);
}

void build(Tree *&o, int l, int r) {
    o = new Tree(l, r, Matrix(0, 0, 0, 0));
    if(l == r) return (void)(o->val = val[redfn[l]]);
    int mid = (l + r) >> 1;
    build(o->ch[0], l, mid);
    build(o->ch[1], mid + 1, r);
    o->upd();
}
Matrix query(Tree *o, int l, int r) {
    if(o->r < l || o->l > r) return Matrix(0, -inf, -inf, 0);
    if(l <= o->l && o->r <= r) return o->val;
    return query(o->ch[0], l, r) * query(o->ch[1], l, r);
}
void change(Tree *o, int pos, Matrix v) {
    if(o->r < pos || o->l > pos) return;
    if(o->l == o->r) return (void)(o->val = v);
    change(o->ch[0], pos, v), change(o->ch[1], pos, v);
    o->upd();
}
Matrix query(int x) {
    return query(root, dfn[x], e[top[x]]);
}
void change(int x, int v) {
    val[x] = val[x] + Matrix(0, 0, -c[x] + v, 0);
    c[x] = v;
    int fx = top[x], ffx = fa[fx];
    while(1) {
        Matrix Old = query(fx);
        change(root, dfn[x], val[x]);
        if(!ffx) return; 
        Matrix New = query(fx);
        val[ffx].a[0][0] += std::max(New.a[0][0], New.a[1][0]) - std::max(Old.a[0][0], Old.a[1][0]);
        val[ffx].a[0][1] = val[ffx].a[0][0];
        val[ffx].a[1][0] += New.a[0][0] - Old.a[0][0];
        x = ffx;
        fx = top[x];
        ffx = fa[fx];
    }
}
        
int main() {
    n = in(), m = in();
    for(int i = 1; i <= n; i++) c[i] = in();
    int x, y;
    for(int i = 1; i < n; i++) {
        x = in(), y = in();
        add(x, y), add(y, x);
    }
    dfs1(1, 0);
    dfs2(1, 1);
    dfs3(1, 0);
    build(root, 1, n);
    while(m --> 0) {
        x = in(), y = in();
        change(x, y);
        Matrix ans = query(1);
        printf("%d\n", std::max(ans.a[0][0], ans.a[1][0]));
    }
    return 0;
}

转载于:https://www.cnblogs.com/olinr/p/10241365.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值