哥德巴赫猜想
哥德巴赫猜想:任一大于 2 的偶数,都可表示成两个素数之和。
验证: 2000 以内大于 2 的偶数都能够分解为两个素数之和。
( 1)问题分析
为了验证哥德巴赫猜想对 2000 以内大于 2 的偶数都是成立的,要将整数分解为两部分
(两个整数之和),然后判断分解出的两个整数是否均为素数。若是,则满足题意;否则重新
进行分解和判断。素数测试的算法可采用试除法,即用 2, 3, 4,…, n 去除 n,如果能被
整除则为合数,不能被整除则为素数。
//算法 #include<iostream> #include<math.h> int prime(int n); //判断是否均为素数 int main() { int i,n; for(i=4;i<=2000;i+=2) //对 2000 大于 2 的偶数分解判断,从 4 开始,每次增 2 { for(n=2;n<i;n++) //将偶数 i 分解为两个整数,一个整数是 n,一个是 i-n if(prime(n)) //判断第一个整数是否均为素数 if(prime(i-n)) //判断第二个整数是否均为素数 { cout<< i <<"=" << n <<"+"<<i-n<<endl; //若均是素数则输出 break; } if(n==i) cout<<"error "<<endl; } } int prime(int i) //判断是否为素数 { int j; if(i<=1) return 0; if(i==2) return 1; for(j=2;j<=(int)(sqrt((double)i);j++) if(!(i%j)) return 0; return 1; }