一个原则是:应该尽量少的使用parallelfor, 因为parallel for也需要时间开销。即:
(1)如果外层循环次数远远小于内层循环次数,内层循环较多时,将parallel for加在内层循环。
示例代码:
int a=0;
int b=0;
inline void openmpTest2(int thread_num)
{
for(int i=0;i<100;i++)
{
#pragma omp parallel for num_threads(thread_num)
for(int j=0;j<1000000000;j++)
{
a++;
}
#pragma omp parallel for num_threads(thread_num)
for(int j=0;j<1000000000;j++)
{
b++;
}
}
}
4个线程,运行时间是:89ms。
(2)否则将parallel for 加在最外层循环,一般情况都是这样。二者在实际情况可对比性能进行选择。
示例代码:
int a=0;
int b=0;
inline void openmpTest1(int thread_num)
{
#pragma omp parallel for num_threads(thread_num)
for(int i=0;i<1000000000;i++)
{
for(int j=0;j<1000000000;j++)
{
a++;
}
for(int j=0;j<1000000000;j++)
{
b++;
}
}
}
4个线程,运行时间是:119ms。如果将以上三个for循环前都加上parallel for,性能极差。
备注:不显示设置线程数,默认的线程数为本机能够并行的最大线程数,即omp_get_max_threads()返回值;
版权声明:本文为博主原创文章,未经博主允许不得转载。