题意:
m次询问,问下标最小字典序的长度为x的LIS是什么
n<=10000, m<=1000
思路:
先nlogn求出f[i]为以a[i]开头的LIS长度
然后贪心即可,复杂度nm
我们正常求LIS处理出的low[i]为长度为i的LIS结尾最小元素,f[i]为以a[i]结尾的LIS长度
为了迎合题目要求,我们从数组结尾开始求最长下降子序列,得到的f[i]为以结尾开头的,以a[i]结尾的最长下降子序列,等效于以a[i]开头的LIS
其中为了不手写二分调半天。。使用了lower_bound,此时因为是找最长下降子序列,所以变成负的即可
代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<stack> #include<queue> #include<deque> #include<set> #include<vector> #include<map> #include<functional> #define fst first #define sc second #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define lc root<<1 #define rc root<<1|1 #define lowbit(x) ((x)&(-x)) using namespace std; typedef double db; typedef long double ldb; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> PI; typedef pair<ll,ll> PLL; const db eps = 1e-6; const int mod = 1e9+7; const int maxn = 2e6+100; const int maxm = 2e6+100; const int inf = 0x3f3f3f3f; const db pi = acos(-1.0); int n, m; int a[maxn], low[maxn]; int f[maxn]; int main(){ scanf("%d", &n); for(int i = 1; i <= n; i++){ scanf("%d", &a[i]); } int cnt = 0; for(int i = n; i >= 1; i--){ int t = lower_bound(low+1, low+1+cnt, -a[i]) - low; f[i] = t; cnt = max(cnt, t); low[t] = -a[i]; } scanf("%d", &m); for(int i = 1; i <= m; i++){ int x; scanf("%d", &x); if(x > cnt)printf("Impossible\n"); else{ int tmp = -1; for(int j = 1; j <= n; j++){ if(x && f[j] >= x && a[j] > tmp){ x--; tmp = a[j]; printf("%d ",a[j]); } }printf("\n"); } } return 0; } /* 6 3 4 1 2 3 6 3 6 4 5 */