数学——Euler方法求解微分方程详解(python3)

算法的数学描述图解

1372901-20181120191214799-1689099346.jpg

实例

用Euler算法求解初值问题
\[ \frac{dy}{dx}=y+\frac{2x}{y^2}\]
初始条件\(y(0)=1\),自变量的取值范围\(x \in [0, 2]\)

算法Python3代码求解

# 导入包
import numpy as np
import matplotlib.pyplot as plt
# 定义求解函数 y_dot = y + 2*x/(y*y)
def fx(y, x):
    return y + 2*x/(y*y)
# 算法定义
def ode_euler(f, y0, tf, h):
    """
    Solve and ODE using Euler method.
    Solve the ODE y_dot = f(y, t)
    Parameters
    ------------
    :param f: function
            Function describing the ODE
    :param y0: array_like
            Initial conditions.
    :param tf: float
            Final time.
    :param h: float
            Time step
    :return:
    y : array_like
        Solution to the ODE.
    t : array_like
        Time vector.
    """

    y0 = np.array(y0)
    ts = np.arange(0, tf + h, h)
    y = np.empty((ts.size, y0.size))
    y[0, :] = y0
    for t, i in zip(ts[1:], range(ts.size - 1)):
        y[i + 1, :] = y[i, :] + h * f(y[i, :], t)
    return y, ts
# 实例应用案例
def newton_cooling_example():
    print('Solving Newton Cooling ODE...')
    y, ts = ode_euler(fx, 1, 2, 0.01)
    print('Done.')
    plt.figure()
    plt.plot(ts, y)
    plt.xlabel('time [s]')
    plt.title('Solution to the Newton cooling equation')
    plt.show()

代码中的部分函数理解

numpy.array

numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
参考numpy.array
output:创建一个array,返回类型为ndarray
实例

np.array([1, 2, 3.0]) # array([1., 2., 3.])
np.array([[1, 2], [3, 4]]) # array([[1, 2], [3, 4]])
np.array([1, 2, 3], dtype=complex) # array([1.+0.j, 2.+0.j, 3.+0.j])

numpy.arange

参考numpy.arange
numpy.arange([start, ]stop, [step, ]dtype=None)
作用:在给定间隔内返回均匀间隔的值。
值在半开区间[start, stop)内生成(换句话说,包括开始但不包括终止)。返回的是ndarray而不是列表。
np.arange()函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。
参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况 :

1. 一个参数时,参数值为终点,起点取默认值0,步长取默认值1。 
2. 两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。 
3. 三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数。

案例

np.arange(3,7) # array([3, 4, 5, 6])
np.arange(3,7,2) # array([3, 5])

numpy.ma.size

numpy.ma.size(obj, axis=None)
参考
案例

a = np.array([[1,2,3],[4,5,6]])
np.size(a) # 6
np.size(a,1) # 3
np.size(a,0) # 2

numpy.empty

参考
numpy.empty(shape, dtype=float, order='C')
shape : int or tuple of int Shape of the empty array, e.g., (2, 3) or 2.
out : ndarray
案例

np.empty([2, 2])
# 结果
array([[ -9.74499359e+001, 6.69583040e-309],
       [ 2.13182611e-314, 3.06959433e-309]]) #random
np.empty([2, 2], dtype=int)
# 结果
array([[-1073741821, -1067949133],
       [ 496041986, 19249760]]) #random

转载于:https://www.cnblogs.com/brightyuxl/p/9990958.html

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 要用Euler求解微分方程,可以按照以下步骤: 1. 将微分方程转化为差分方程,即将微分项用差分项代替。 2. 选择合适的步长h,确定求解区间。 3. 给出初始条件,即在求解区间的起点处给出函数值。 4. 用Euler法逐步求解差分方程,得到函数在求解区间内的近似解。 在MATLAB中,可以使用以下代码实现Euler求解微分方程: % 定义微分方程 function dydt = myode(t,y) dydt = -2*t*y; % 定义求解区间和步长 tspan = [ 1]; h = .1; % 给出初始条件 y = 1; % 用Euler求解差分方程 [t,y] = euler(@myode,tspan,y,h); % 绘制函数图像 plot(t,y); % 定义Euler法函数 function [t,y] = euler(f,tspan,y,h) t = tspan(1):h:tspan(2); y = zeros(size(t)); y(1) = y; for i = 1:length(t)-1 y(i+1) = y(i) + h*f(t(i),y(i)); end end 在上述代码中,myode函数定义了微分方程euler函数定义了Euler求解差分方程的过程。通过调用euler函数,可以得到函数在求解区间内的近似解,并用plot函数绘制函数图像。 ### 回答2: 欧拉法是一种求解微分方程数值解的方法。它采用数值逼近的方法,将微分方程转化为差分方程,并用迭代的方式求解。本文将介绍如何用MATLAB编写求解微分方程的欧拉法程序。 首先,需要定义初始条件。例如,可以定义t的初始值为0,y的初始值为1。这些初始值将用于求解微分方程的初值问题。 接下来,可以选择步长,通常用h表示。步长是迭代过程中每个时间步长的长度。较大的步长可以使计算更快,但可能会降低精度。较小的步长可以提高精度,但需要更多的计算时间。建议试验不同的步长值,以找到一个适当的步长值。 然后,可以编写欧拉法的主程序。在MATLAB中,欧拉法的主程序如下所示: function[y,t]=euler(f,t0,y0,h,N) t=t0:h:t0+N*h; y=zeros(1,length(t)); y(1)=y0; for i=1:N y(i+1)=y(i)+h*f(t(i),y(i)); end end 其中,“f”是微分方程的函数句柄,可以使用MATLAB中的函数句柄“@”操作符引用。例如,如果要解决dy/dt=t*y的微分方程,则可以用以下代码定义函数句柄: f=@(t,y) t*y; 然后将其作为参数传递给欧拉法程序。 欧拉法函数接受五个输入:微分方程函数f,初始时间t0,初始条件y0,步长h和总时间N。函数输出两个向量,分别是y和t,其中y是求解的数值解,t是时间向量。 例如,要求解dy/dt=t*y,在t=0时y=1的初值问题,假设步长为h=0.1,总时间为N=10,则可以使用以下代码求解: f=@(t,y) t*y; [t,y]=euler(f,0,1,0.1,10); 可以将结果绘制为函数的图形,例如使用MATLAB内置的plot函数来绘制y关于t的函数图形: plot(t,y) 可以看到,欧拉法求解的数值解与解析解之间存在一定的误差。可以通过减小步长h来提高精度。此外,还可以使用其他数值方法求解微分方程,例如4阶龙格库塔法和5阶龙格库塔法。这些方法通常提供更高的精度和稳定性,但通常需要更多的计算资源。 ### 回答3: 欧拉法是一种常用的求解微分方程的数值方法,可以用于求解一阶和高阶常微分方程。这种方法利用Taylor展开式,将微分方程离散化为一系列的差分方程,通过求解这些差分方程逐步得到微分方程的解。欧拉法的优点是简单易懂,但精度较低。 在Matlab中,可以通过编写代码实现欧拉法求解微分方程。下面以一阶常微分方程为例,介绍欧拉法的求解过程。 假设有一阶常微分方程dy/dx = f(x,y),初始条件为y(x0) = y0,我们需要求解在区间[x0, x1]上的解。欧拉法的公式为:y(i+1) = y(i) + h * f(x(i),y(i)),其中h是步长,x(i) = x0 + i * h,y(i)是在x(i)处的近似解,y(i+1)是在x(i+1)处的近似解。欧拉法的原理是通过迭代逐步求解微分方程,利用之前的解进行近似。 具体实现时,可以将上述公式写成Matlab代码: function [x,y] = euler(f,x0,y0,h,x1) % 使用欧拉法求解一阶常微分方程 % f:函数句柄,即dy/dx = f(x,y) % x0:起始点 % y0:起始值 % h:步长 % x1:终止点 x = x0:h:x1; %生成x的取值区间 y = zeros(size(x)); %预先分配y的空间 y(1) = y0; %将初始值赋给y(1) for i = 1:length(x)-1 y(i+1) = y(i) + h*f(x(i),y(i)); %使用欧拉法递推计算y的取值 end 在使用欧拉法时,我们需要选择合适的步长h,通常是需要多次尝试的。步长过大会导致精度下降,步长过小会导致计算量的增加。当然,步长的选择也取决于需求的精度和计算量的要求。 总的来说,欧拉法是求解微分方程的一种基本方法,通过Matlab实现可以使我们更加直观地理解算法的过程。当然,在实际求解微分方程时,还需要考虑其他更高精度的数值方法,以及特殊情况下的处理方法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值