weka java tfidf,Weka 3.7中RandomForest的确切实现

Having reviewed the original Breiman (2001) paper as well as some other board posts, I am slightly confused with the actual procedure used by WEKAs random forest implementation. None of the sources was sufficiently elaborate, many even contradict each other.

How does it work in detail, which steps are carried out?

My understanding till now:

For each tree a bootstrap sample of the same size as the training data is created

Only a random subset of the available features of defined size (parameter can be chosen in WEKA) is considered for each node

Regarding the base tree learner used I found a 2006 post stating is was a modified REPTree.

Tree is fully grown and not pruned.

Majority vote is applied (in case of accuracy as performance metric)

My questions:

Is the bootstrap sampling actually used?

Is REPTree still in use or has the algorithm been changed since then?

Clarifying these issues would help me a lot!

解决方案

To answer your questions

Bagging (bootstrap aggregation) is indeed used. You can view that in the code on line 529

It appears that RandomTree is used, as seen on line 530

This information is from Weka 3.7.5, I believe this is correct all the way back to version 3.6.8, but I have not checked the source code.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值