Souvenir Shop
魔幻题目,这谁搞得到啊...
考场上完全sb了写了个线段树合并,想必我是个复杂度分析都没学过的入门级选手
发现这个网格图dag它的出度最多只有2
如果按照先走朝上的一条边进行dfs走后续遍历,就是遍历完儿子再加自己,那么dfn大于它的一定不会比它低
然后再按照先走朝右的一个边走后续遍历,dfn2大于它的一定不会比它左
那么它可以到达的点满足\(\le dfn1_i,\le dfn2_i\)就可以了...
然后就是普及组随便统计一下的问题了...
Code:
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
const int N=3e5+10;
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
struct koito_yuu
{
int dfn1,dfn2,v,now;
bool friend operator <(koito_yuu a,koito_yuu b){return a.dfn1==b.dfn1?a.dfn2<b.dfn2:a.dfn1<b.dfn1;}
}yuu[N];
int s[N],ans[N],mi[N],vis[N];
int n,m,v[N],to[2][N],dfsclock,dx[N],dy[N];
void add(int x,int d)
{
while(x<=n) s[x]+=d,x+=x&-x;
}
int qry(int x)
{
int ret=0;
while(x) ret+=s[x],x-=x&-x;
return ret;
}
void dfs1(int now)
{
if(!now||vis[now]) return;
vis[now]=1;
dfs1(to[0][now]);
dfs1(to[1][now]);
yuu[now].dfn1=++dfsclock;
}
void dfs2(int now)
{
if(!now||vis[now]) return;
vis[now]=1;
dfs2(to[1][now]);
dfs2(to[0][now]);
yuu[now].dfn2=++dfsclock;
}
int main()
{
freopen("souvenir.in","r",stdin);
freopen("souvenir.out","w",stdout);
read(n),read(m);
for(int i=1;i<=n;i++) read(dx[i]),read(dy[i]),read(yuu[i].v),yuu[i].now=i,mi[i]=n+1;
for(int u,v,i=1;i<=m;i++)
{
read(u),read(v);
if(dx[u]==dx[v])
{
if(dy[u]>dy[v]) std::swap(u,v);
to[0][u]=v;
}
else
{
if(dx[u]>dx[v]) std::swap(u,v);
to[1][u]=v;
}
}
dfs1(1);
dfsclock=0;
memset(vis,0,sizeof vis);
dfs2(1);
std::sort(yuu+1,yuu+1+n);
for(int i=1;i<=n;i++)
{
if(mi[yuu[i].v]>yuu[i].dfn2)
{
add(mi[yuu[i].v],-1);
mi[yuu[i].v]=yuu[i].dfn2;
add(mi[yuu[i].v],1);
}
ans[yuu[i].now]=qry(yuu[i].dfn2);
}
for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
return 0;
}
2019.3.26