POJ1061 青蛙的约会

一、题目

POJ 1061    青蛙的约会

【关于“欧几里得求最大公约数”和“扩展欧几里得算法”的题目】

二、题目源程序

#include <iostream>

using namespace std;

#define LL long long

LL gcd(LL a, LL b)
{
    return b ? gcd(b, a%b) : a;
}

//find x, y that satisfied the equation ax+by=d, which minimize the {|x|+|y|}. ps:d = gcd(a,b).
void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
    if (!b)
    {
        d = a, x = 1, y = 0;
    }
    else
    {
        exgcd(b, a %b, d, y, x);
        y -= x * (a / b);
    }
}
//1、先计算Gcd(a, b),若n不能被Gcd(a, b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a, b),得到新的不定方程a' * x + b' * y = n',此时Gcd(a', b')=1;
//2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0, y0,则n' * x0,n' * y0是方程a' * x + b' * y = n'的一组整数解;
//3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为:
//x = n' * x0 + b' * t
//y = n' * y0 - a' * t
//(t为整数)
bool getans(LL a, LL b, LL c, LL &ans)// ax + by = c 最小整数解
{
    LL r = gcd(a, b), y0;
    if (c%r)//no solutions
    {
        return false;
    }

    a /= r; b /= r; c /= r;

    exgcd(a, b, r, ans, y0);//至此,上面的说明解决了

    LL t = c * ans / b;
    ans = c * ans - t * b;

    /*此时方程的所有解为:x = c*ans - b*t, x的最小的可能值是0
    令x = 0可求出当x最小时的t的取值,但由于x = 0是可能的最小取值,实际上可能x根本取不到0
    那么由计算机的取整除法可知:由 t = c*k1 / b算出的t
    代回x = c*ans - b*t中,求出的x可能会小于0,此时令t = t + 1,求出的x必大于0;
    如果代回后x仍是大于等于0的,那么不需要再做修正。*/

    if (ans < 0)
    {
        ans += b;
    }
    return true;
}
int main()
{
    LL x, y, m, n, L;
    while (cin >> x >> y >> m >> n >> L)
    {
        LL a = n - m, b = L, c = x - y;
        LL ans;
        bool flag = getans(a, b, c, ans);
        if (!flag)
        {
            cout << "Impossible" << endl;
            continue;
        }
        cout << ans << endl;
    }
}

三、解题思路

      两只青蛙跳一次所花费的时间相同,我们设其为t,则x+mt是青蛙A从坐标原点到终点所走的距离,y+nt是B走的距离,要想碰面,则他们相减一定是地面周长的整数倍,设为k*L;则:(x+mt)-(y+nt)=kl;变形得:(m-n)t-(y-x)=kL;即有(m-n)t mod L=y-x;为线性同余方程。此方程有解当且仅当y-x能被m-n和L的最大公约数(记为gcd(m-n,L)),即gcd(m-n,L)|y-x。这时,如果x0是方程的一个解,即当t=x0时,(m-n)t mod L=y-x成立,那么所有的解可以表示为:
{x0+k(L/gcd(m-n,L))|(k∈整数)}。

欧几里得算法的拓展应用中有如下三条定理:

   定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使d = a*x+ b*y。

   定理二:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

   定理三:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

      证明:上述同余方程等价于ax + by = c,如果有解,两边同除以d,就有a/d * x + b/d * y = c/d,即a/d * x ≡ c/d (mod b/d),显然gcd(a/d, b/d) = 1,所以由定理二知道x在[0, b/d - 1]上有唯一解。所以ax + by = c的x在[0, b/d - 1]上有唯一解,即ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

      如果得到ax ≡ c (mod b)的某一特解X,那么令r = b/gcd(a, b),可知x在[0, r-1]上有唯一解,所以用x = (X % r + r) % r就可以求出最小非负整数解x了!(X % r可能是负值,此时保持在[-(r-1), 0]内,正值则保持在[0, r-1]内。加上r就保持在[1, 2r - 1]内,所以再模一下r就在[0, r-1]内了)。

 

四、心得体会

起初在运行之后得到的结果正确,我就提交了。可是没有通过。

原因在哪?

输入问题!

起初我的程序里是没有      while (cin >> x >> y >> m >> n >> L)     这句话的,

我写的是  cin >> x >> y >>m>> n >>  L;     没有while的判断。

所以题目要求    “输入只包括一行5个整数”    而我在输入过程中即使每行输一个,输5行,也会照常运行,不会跳出。

 

注意细节,输入输出!

 

 

转载于:https://www.cnblogs.com/fightfor/p/3860968.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
摘 要 伴随着人才教学的关注度越来越高,对于人才的培养也是当今社会发展的最为重要的问题之一。为了进一步的进行人才的培养关工作,许多的学校或者是教育的机构逐步的开展了网络信息化的教学和和管理工作,通过信息化的手段和技术实现网络信息化的教育及管理模式,通过网络信息化的手段实现在线答题在线考试和学生信息在线的管理等操作。这样更加的快捷解决了人才培养之中的问题,也在进一步的促进了网络信息化教学方式的快速的发展工作。相较于之前的人才教育和培养工作之中,存在这许多的问题和局限性。在学生信息管理方面通过线下管理的形式进行学生信息的管理工作,在此过程之中存在着一定的局限性和低效性,往往一些突发的问题导致其中工作出现错误。导致相关的教育工作受到了一定的阻碍。在学生信息和学生成绩的管理方面,往常的教育模式之下都是采用的是人工线下的进行管理和整理工作,在这一过程之中存在这一定的不安全和低效性,面对与学生基数的越来越大,学生的信息管理也在面领着巨大的挑战,管理人员面领着巨大的学生信息的信息量,运用之前的信息管理方式往往会在统计和登记上出现错误的情况的产生,为后续的管理工作造成了一定的困难。然而通过信息化的管理方式进行对学生信息的管理不仅可以避免这些错误情况的产生还可以进一步的简化学生信息管理工作的流程,节约了大量的人力和物力的之处。在线答题系统的实现不仅给学生的信息管理工作和在线考试带来了方便也进一步的促进了教育事业信息化的发展,从而实现高效化的教学工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值