2016级算法第五次上机-F.ModricWang的水系法术

1066 ModricWang的水系法术

思路

比较典型的最大流问题,需要注意的是,题目已经暗示(明示)了这里的边是双向的,在建图的时候需要加上反向边的容量值。

解决最大流问题的基本思路就是不断在残量网络上找增广路径,这里可以参考一下我院远古学长Song Renfei对于ISAP算法的讲解:ISAP

时间复杂度\(O(V^2 \sqrt E)\)

代码

#include <iostream>
#include <cstring>

using std::ios_base;
using std::cin;
using std::cout;

const int MAXN = 1100;
int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int sap(int start, int end, int nodenum) {
    memset(cur, 0, sizeof(cur));
    memset(dis, 0, sizeof(dis));
    memset(gap, 0, sizeof(gap));
    int u = pre[start] = start, maxflow = 0, aug = -1;
    gap[0] = nodenum;
    while (dis[start] < nodenum) {
        loop:
        for (int v = cur[u]; v < nodenum; v++)
            if (maze[u][v] && dis[u]==dis[v] + 1) {
                if (aug==-1 || aug > maze[u][v])aug = maze[u][v];
                pre[v] = u;
                u = cur[u] = v;
                if (v==end) {
                    maxflow += aug;
                    for (u = pre[u]; v!=start; v = u, u = pre[u]) {
                        maze[u][v] -= aug;
                        maze[v][u] += aug;
                    }
                    aug = -1;
                }
                goto loop;
            }
        int mindis = nodenum - 1;
        for (int v = 0; v < nodenum; v++)
            if (maze[u][v] && mindis > dis[v]) {
                cur[u] = v;
                mindis = dis[v];
            }
        if ((--gap[dis[u]])==0)break;
        gap[dis[u] = mindis + 1]++;
        u = pre[u];
    }
    return maxflow;
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, m;
    cin >> n >> m;
    memset(maze, 0, sizeof(maze));
    for (int i = 0; i < m; i++) {
        int a, b, c;
        cin >> a >> b >> c;
        maze[a][b] = maze[b][a] = c;
    }
    int ans = sap(1, n, n + 1);
    cout << ans << "\n";
}

转载于:https://www.cnblogs.com/AlvinZH/p/8045186.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值