长沙理工大学
硕士
2016
O241.8
期权定价模型的高精度差分法
High Precision Difference Method of Option Pricing Model
黄振平
张宏伟;胡海军
数学
偏微方程数值解
刘仲云
1973年布莱克和斯科尔斯第一次建立了布莱克和斯科尔斯公式,从而开创了期权定价的新领域,随后不断被完善和推广,被广泛的应用于金融交易中,极大地推动了衍生金融市场的发展。考虑到期权定价模型的解析解过于复杂,甚至在某些边值条件下还可能不存在,于是我们就寻用数值方法来得到它们的数值解。相比之下,随着计算机技术和算法的发展,合理的算法下得到的数值解几乎可以等同于精确的解析解,且运行简单。于是采用数值方法来解决期权定价解的问题就变得意义重大了。紧致差分方法作为有限差分的一种,具有精度高,所需模板节点少,运算简单等特点,成为近年来关注的一个焦点。本文通过泰勒展开得到三点四阶紧致差分格式,运用傅里叶法从理论上分析了格式的误差,而后对期权定价模型进行坐标变换得到了常系数对流扩散方程,并采用紧致差分格式和预报校正法进行离散,借用MATLAB软件得到了合理的数值结果。但由于敲定价格函数是不光滑的,导致均匀网格下的四阶差分格式在实际计算时误差较大,于是采用拉伸变换对敲定价格附近网格进行加密,并采用四阶有限差分格式来离散模型,从而得到了求解期权模型的四阶精度的有限差分格式,数值结果验证了方法的优越性。
In 1973,Black-Scholes equation was established by Black and Scholes for the first time,which created a new field of option pricing.Then by continuous improving and promotion,this equation was widely applied to financial transactions,which greatly promoted the development of the derivative financial market.Considering that the analytical solution of the option pricing model is too complex,and that it may even do not exist in some boundary value conditions,we use numerical method to get its numerical solution.With the development of computer technology and algorithm,numerical solution out of reasonable algorithm,which is much easier to run,is almost the exact analytical solution.So it is of great significance to work out option pricing solution using numerical method.Compact finite difference method,one type of finite difference,has the characterist