POJ 1733【奇偶游戏】(边带权扩展域并查集)

我们用sum数组来表示序列S的前缀和,那么在每次的回答中:

1 S[l~r]有偶数个1,等价于sum[l-1]与sum[r]的奇偶性相同。

2 S[l~r]有偶数个1,等价于sum[l-1]与sum[r]的奇偶性不同。

我们有如下传递关系:

1.若x1与x2奇偶性相同,x2与x3奇偶性也相同,那么x1与x3的奇偶性也相同。

2. 若x1与x2奇偶性相同,x2与x3奇偶性不同,那么x1与x3的奇偶性不同。

3.2. 若x1与x2奇偶性不同,x2与x3奇偶性不同,那么x1与x3的奇偶性相同。

另外本体序列长度N很大,但M较小,可以先对数据离散化,

第一种 边带权并查集

上面的传递关系和异或操作很相似,我们考虑一下异或操作。

边权d[x]为0,表示x与fa[x]的奇偶性相同,d[x]为1,表示不同,我们在路径压缩时,对x到树根路径上的所有边权做异或运算,即可得到x与树根的奇偶关系。

设l-1与r离散化后得到的值为x,y。

若x,y在一个集合,d[x]^d[y]既x和y的奇偶关系。若d[x]^d[y]!=ans,则在撒谎。

若x,y不在一个集合,则合并两个集合,同时更新新边的边权d[p]=d[x]^d[y]^ans.

//边带权并查集
#include<bits/stdc++.h>
using namespace std;
const int N = 2e4 + 10;
int fa[N], a[N], tot,n,m,d[N];
struct node{
    int l, r, ans;
}b[N];
void read()//读入 离散化
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++)
    {
        char s[6];
        scanf("%d%d%s", &b[i].l, &b[i].r, s);
        b[i].ans = (s[0] == 'o' ? 1 : 0);//奇数个s[l-1]与s[r]奇偶性不相同,偶数个相同
        a[++tot] = b[i].l - 1;
        a[++tot] = b[i].r;
    }
    sort(a + 1, a + tot + 1);
    tot = unique(a + 1, a + tot + 1) - a - 1;
}
int get(int x)
{
    if (x == fa[x]) return x;
    int root = get(fa[x]);
    d[x] ^= d[fa[x]];
    return fa[x] = root;
}
int main()
{
    read();
    for (int i = 0; i <= tot; i++)
        fa[i] = i;
    int x, y;
    for (int i = 1; i <= m; i++)
    {
        //求出l-1和r离散化后的值
        x = lower_bound(a + 1, a + tot + 1, b[i].l - 1) - a;
        y = lower_bound(a + 1, a + tot + 1, b[i].r) - a;
        //执行get函数,得到树根,并进行路径压缩
        int p = get(x), q = get(y);
        if (p == q)//已在同一集合
        {
            if (d[x] ^ d[y] != b[i].ans)//不满足
            {
                cout << i - 1 << endl;
                return 0;
            }
        }
        else//不在同一集合,合并
        {
            fa[p] = q;
            d[p] = d[x] ^ d[y] ^ b[i].ans;
        }
    }
    cout << m << endl;
    return 0;
}
View Code

第二种 扩展域并查集

把每个点x拆成两个节点x_odd,x_even,x_odd表示sum[x]为奇数,x_even表示偶数,这两个节点分别是x的奇数域和偶数域

#include<bits/stdc++.h>
using namespace std;
const int N = 2e4 + 10;
int fa[2*N], a[N], tot,n,m;
struct node{
    int l, r, ans;
}b[N];
int get(int x)
{
    if (x == fa[x]) return x;
    return fa[x] = get(fa[x]);
}
void read()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++)
    {
        char s[6];
        scanf("%d%d%s", &b[i].l, &b[i].r, s);
        b[i].ans = (s[0] == 'o' ? 1 : 0);
        a[++tot] = b[i].l - 1;
        a[++tot] = b[i].r;
    }
    sort(a + 1, a + tot + 1);
    tot = unique(a + 1, a + tot + 1) - a - 1;
}
int main()
{
    read();
    for (int i = 0; i <= 2*tot; i++)
        fa[i] = i;
    int x, y;
    for (int i = 1; i <= m; i++)
    {
        x = lower_bound(a + 1, a + tot + 1, b[i].l - 1) - a;
        y = lower_bound(a + 1, a + tot + 1, b[i].r) - a;
        int x_odd = x, x_even = x + tot;
        int y_odd = y, y_even = y + tot;
        if (b[i].ans)
        {
            if (get(x_odd)==get(y_odd))
            {
                cout << i - 1 << endl;
                return 0;
            }
            fa[get(x_odd)] = get(y_even);
            fa[get(x_even)] = get(y_odd);
        }
        else
        {
            if (get(x_odd) == get(y_even))
            {
                cout << i - 1 << endl;
                return 0;
            }
            fa[get(x_odd)] = get(y_odd);
            fa[get(x_even)] = get(y_even);
        }
    }
    cout << m << endl;
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/xiaoguapi/p/10447515.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值