我们一起读书吧
NumPy库介绍
NumPy是高性能科学计算和数据分析的基础包。其提供了非常易用的C语言API,这使得将数据传递给用底层语言编写的外部类库,再由外部类库将计算结果按照NumPy数组进行返回变得非常简单。部分功能如下:
ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。
用于对整组数据进行快速运算的标准数学函数(无需编写循环)。
用于读写磁盘数据的工具以及用于操作内存映射文件的工具。
线性代数、随机数生成以及傅里叶变换功能。
用于集成C、C++、Fortran等语言编写的代码的工具。
导入numpy库:import numpy as np
Numpy数据类型
类型 | 说明 |
int8、uint8 | 有符号(-128-127)和无符号(0-255)8位整型(1字节) |
int16、uint16 | 有符号和无符号16位整型(2字节) |
int32、uint32 | 有符号和无符号32位整型(4字节) |
int64、uint64 | 有符号和无符号64位整型(8字节) |
float16 | 半精度浮点数,1位表示正负,5位表示指数,10位表示尾数 |
float32 | 单精度浮点数,1位表示正负,8位表示指数,23位表示尾数 |
float64 | 双精度浮点数,1位表示正负,11位表示指数,52位表示尾数 |
complex64 | 复数,分别用两个32位浮点数表示实部和虚部 |
complex128 | 复数,分别用两个64位浮点数表示实部和虚部 |
bool | 布尔型,用一位存储的布尔类型 |
object | python对象 |
string | 固定长度字符串 |
属性 | 说明 |
ndim | 返回int。表示数组的维度 |
shape | 返回tuple。表示数组的尺寸,对于n行m列的矩阵,形状为(n,m) |
size | 返回int。表示数组的元素总数,等于数组形状的乘积 |
dtype | 返回data-type。描述数组中元素的类型 |
itemsize | 返回int。表示数组的每个元素的大小(以字节为单位) |
NumPy基本函数
生成函数 | 作用 |
np.array(x) np.array(x,dtype=np.float32) |
将输入数据转化为一个ndarray 将输入数据转化为一个类型为type的ndarray |
np.asarray(array) *① | 将输入数据转化为一个新的(copy)ndarray |
np.ones((M,N))np.ones(N,dtype)np.ones_like(arr) | 生成M*N形状的二维全一ndarray生成N长度类型是dtype的一维全一ndarray 生成一个形状与参数相同的全一ndarray |
np.zeros((M,N)) np.zeros(N,dtype) np.zeros_like(arr) |
生成M*N形状的二维全零ndarray生成N长度类型是dtype的一维全零ndarray 生成一个形状与参数相同的全零ndarray |
np.empty((M,N))np.empty(N,dtype)np.empty_like(arr) | 生成M*N形状未初始化ndarray生成N长度类型是dtype的未初始化ndarray 生成一个形状与参数相同的未初始化ndarray |
np.full((M,N),x) np.full_like(array,x) |
生成M*N形状指定数值为x的ndarray生成形状相同的指定数值为x的 |