python如何求一个矩阵里非nan数据的最大值_Python学习:NumPy库

本文介绍了Python中的NumPy库,它用于高性能科学计算和数据分析,包括多维数组、数学函数、线性代数等。文章提到了如何使用NumPy找到矩阵中非nan值的最大值,并强调了array和asarray函数的区别。同时,提供了Numpy练习题资源以供读者实践操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们一起读书吧

NumPy库介绍

    NumPy是高性能科学计算和数据分析的基础包。其提供了非常易用的C语言API,这使得将数据传递给用底层语言编写的外部类库,再由外部类库将计算结果按照NumPy数组进行返回变得非常简单。部分功能如下:

  • ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。

  • 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。

  • 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。

  • 线性代数、随机数生成以及傅里叶变换功能。

  • 用于集成C、C++、Fortran等语言编写的代码的工具。

    导入numpy库:import numpy as np

Numpy数据类型

表1:NumPy的基本数据类型
类型 说明
int8、uint8 有符号(-128-127)和无符号(0-255)8位整型(1字节)
int16、uint16 有符号和无符号16位整型(2字节)
int32、uint32 有符号和无符号32位整型(4字节)
int64、uint64 有符号和无符号64位整型(8字节)
float16 半精度浮点数,1位表示正负,5位表示指数,10位表示尾数
float32 单精度浮点数,1位表示正负,8位表示指数,23位表示尾数
float64 双精度浮点数,1位表示正负,11位表示指数,52位表示尾数
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128 复数,分别用两个64位浮点数表示实部和虚部
bool 布尔型,用一位存储的布尔类型
object python对象
string 固定长度字符串
表2:NumPy的数组属性及说明
属性 说明
ndim 返回int。表示数组的维度
shape 返回tuple。表示数组的尺寸,对于n行m列的矩阵,形状为(n,m)
size 返回int。表示数组的元素总数,等于数组形状的乘积
dtype 返回data-type。描述数组中元素的类型
itemsize 返回int。表示数组的每个元素的大小(以字节为单位)

NumPy基本函数

表3:NumPy库函数说明
生成函数 作用
np.array(x)
np.array(x,dtype=np.float32)
将输入数据转化为一个ndarray
将输入数据转化为一个类型为type的ndarray
np.asarray(array) *① 将输入数据转化为一个新的(copy)ndarray
np.ones((M,N))np.ones(N,dtype)np.ones_like(arr) 生成M*N形状的二维全一ndarray生成N长度类型是dtype的一维全一ndarray
生成一个形状与参数相同的全一ndarray
np.zeros((M,N))
np.zeros(N,dtype)
np.zeros_like(arr)
生成M*N形状的二维全零ndarray生成N长度类型是dtype的一维全零ndarray
生成一个形状与参数相同的全零ndarray
np.empty((M,N))np.empty(N,dtype)np.empty_like(arr) 生成M*N形状未初始化ndarray生成N长度类型是dtype的未初始化ndarray
生成一个形状与参数相同的未初始化ndarray
np.full((M,N),x)
np.full_like(array,x)
生成M*N形状指定数值为x的ndarray生成形状相同的指定数值为x的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值