剑指offer 面试13题

本文介绍了一道关于机器人运动范围的算法题,机器人从(0,0)开始移动,每步只能向上、下、左、右移动一格,但不能进入行坐标和列坐标数位之和大于k的格子。通过回溯法和递归实现,计算机器人能到达的有效格子数量。
摘要由CSDN通过智能技术生成

面试13题:

题目:机器人的运动范围

题:地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

 

解题思路:回溯法、递归

解题代码:

# -*- coding:utf-8 -*-
class Solution:
    def movingCount(self, threshold, rows, cols):
        # write code here
        if threshold<0 or rows<1 or cols<1:
            return 0
        markmatrix=[False]*(rows*cols)
        count=self.movingCountCore(threshold,rows,cols,0,0,markmatrix)
        return count
    
    def movingCountCore(self,threshold,rows,cols,row,col,markmatrix):
        value=0
        if self.check(threshold,rows,cols,row,col,markmatrix):
            markmatrix[row*cols+col]=True
            value = 1+ self.movingCountCore(threshold, rows, cols, row-1, col, markmatrix)+ \
                self.movingCountCore(threshold, rows, cols, row+1, col, markmatrix) + \
                self.movingCountCore(threshold, rows, cols, row, col-1, markmatrix) + \
                self.movingCountCore(threshold, rows, cols, row, col+1, markmatrix)
        return value
        
    
    def check(self,threshold,rows,cols,row,col,markmatrix):
        if row >= 0 and row < rows and col >= 0 and col < cols and \
            self.getDigitNum(row)+self.getDigitNum(col)<=threshold and not markmatrix[row*cols+col]:
            return True
        return False
    
    def getDigitNum(self,number):
        sum=0
        while(number>0):
            sum+=number%10
            number=number//10
        return sum

 

转载于:https://www.cnblogs.com/yanmk/p/9193711.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值