导航条——flash导航条

1.概述

在一些个性网站中,网站导航的首选就是flash导航条,flash导航条可以给浏览者带来更好的视觉效果,是网站个性的主要体现之一。

 

2.技术要点

主要应用Flash动作脚本中的Button类的release()方法实现。Release()方法在按下并释放鼠标左键时触发。

语法如下:

on(release)

{

      //此处插入语句

}

 

3.具体实现

(1)在Macromedia Flash Professional 8中,新建一个Flash文档,在菜单中单击“插入”→“新建元件”命令,在弹出的“创建新元件”对话框中选择“按钮”单选按钮,单击“确定”按钮。

(2)在“弹起”的关键帧输入文本“首页”,选择“指针经过”帧,单击鼠标右键,在弹出的快捷菜单中选择“插入关键帧”命令,在“按下”帧插入一个动画元件,在“点击”帧中画出作用区域。

(3)返回场景,从库中将按元件拖入场景中适当的位置。

(4)选中按钮,打开“动作”面板,在代码区中输入如下代码:

on(release)

{

            getURL(“index.jsp”);

}

(5)依次做出多个按钮,然后生成SWF文件。并在网页中插入刚刚生成的SWF文件,代码如下:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="767" height="80">

      <param name="movie" value="navigation.swf" />

      <param name="quality" value="high" />

      <embed src="navigation.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width="767" height="80"></embed>

    </object>

 

转载于:https://www.cnblogs.com/zkn11199/p/5589834.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值