概率论与数理统计公式整理
https://wenku.baidu.com/view/11d3577e5acfa1c7aa00cc9b.html
排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!
(三)组合和组合数
(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.
1. 随机试验与随机事件
如果一个实验事先能够明确地知道试验所有可能的基本结果,在每一次观察中,不能事先准确地预言其中哪一个基本结果会发生,并且在相同条件下可以重复进行,则称此试验为随机试验。
随机试验的每种基本结果称为一个样本点ω,全体基本结果构成的集合称为样本空间。
2. 古典概型
第一种,那个球是可分辨的,所以n个球做排列=》Pnn = n! 。而样本空间则为N^n,是因为每个球都有N个摆放的方式,属于乘法原理。
第二种,球是不可分辨的,所以n个球要做组合。 且每个盒子只能容纳一个球,所以样本空间为N!。
由于球是不可分辨的,4、5项可视为同一事件。 6、7项也可视为同一事件。8、9项也可视为同一事件。
1.3 事件间的关系与事件的运算
A包含于()B,等于B包含事件A。