(信贷风控十六)组合评分卡模型

python信用评分卡建模(附代码,博主录制)

 

https://blog.csdn.net/LuYi_WeiLin/article/details/88624268转载

组合评分卡模型

本篇文章主要总结以下内容

  • 组合模型的概念
  • 常见结构的评分组合模型
  • 单一模型选择需要什么条件
  • 串行结构组合模型实例
  • 并行结构组合模型实例

 

组合模型的概念

 

 

 

 

 

 

 

 

 

 

常见结构的评分组合模型

  • 串行结构组合模型实例

需要注意的是,一般工作中会把GBDT、神经网络、深度学习排在前面(因为精度高),逻辑回归、决策树放在后面

 

 

 

 

 

 并行结构组合模型实

 

 

 

 

 

 

 混合结构组合模型实例(不易于解释,一般不在评分卡使用)

 

 

 

单一模型选择需要什么条件

 

 

 

 

 

 

 

为什么单一模型之间要保证错误率的相互独立?

因为组合模型基于原理就是错误率相对独立,多个单一模型组合会使得组合模型错误率趋于0,也就是如下图;假如单一模型之间都完全不独立的话,单一模型和组合模型预测一样

 

 

 

为什么单一模型的复杂度要适度?

因为我们知道组合模型的复杂度会大于单一模型的复杂度的,假如单一模型就很复杂了,组合模型的复杂度可想而知

其次,复杂度高一般就很难提高精度了,再想从组合模型提高精度,模型会越来越复杂

为什么单一模型不是越多越好?

因为在完全独立的情况下,随着单一模型数量的增多,组合模型的错误率降低的速率已经没有那么明显了,而且随着单一模型的增加,成本会增加。单一模型数量增加复杂度也会上升,响应时间会加长,在实际工作线上比如反欺诈模型要求时效性高要求毫秒级响应,所以数量并非越多越好。

 

根据模型的构成维度可以分为:并行组合、串行组合

根据单一分类器类型可以分为:同态组合、异态组合

所以就会有四种类型的组合模型模式

 

 

 

串行结构组合模型实例

  • 同态串行组合(一般不使用,同态串行组合错误率相互独立性弱,没有太大的提升效果)
  • 异态串行组合

精度高的模型排在前面

 

 

 

以多层神经网络和逻辑回归异态串行组合评分模型为例

 

 

 

 

 

 神经网络模型不一定需要WOE编码,但是神经网络模型要求是数值型输入,我们也可以采用其他编码

 

 

 

单一逻辑回归与多层神经网络加逻辑回归得出的KS与AUC对比

我这里异态串行组合提升不明显的原因是神经网络没有经过一个仔细的调参以及输入节点太少

 

 

 

 

 

 图中融合器针对分类问题,可以

 

 图中融合器针对回归问题,可以

 

 异态并行组合

 

 为什么转换为log odds?方便分数的直接运算,因为分数的表达式如下,分数和分数就可以直接加权平均了

 

 

 

 

 

同态并行组合

 

 

 

 

 

 

 

Boosting

 

 RSM

 

 

python风控建模实战lendingClub(博主录制,catboost,lightgbm建模,2K超清分辨率)

https://study.163.com/course/courseMain.htm?courseId=1005988013&share=2&shareId=400000000398149

 微信扫二维码,免费学习更多python资源

 

转载于:https://www.cnblogs.com/webRobot/p/11557320.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值