152 Maximum Product Subarray

public class Solution {
   public int maxProduct(int[] A) {
        if (A == null || A.length == 0) {
            return 0;
        }
        if (A.length == 1) {
            return A[0];
        }
        
        int max_local = A[0];
        int min_local = A[0];
        int global = A[0];
        
        for (int i = 1; i < A.length; i++) {
            int max_copy = max_local;
            max_local = Math.max(Math.max(A[i], max_local*A[i]), A[i] * min_local);
            min_local = Math.min(Math.min(A[i], max_copy*A[i]), A[i] * min_local);
            global = Math.max(global, max_local);
        }
        return global;
    }
}

参考 http://blog.csdn.net/linhuanmars/article/details/39537283

全局最优和局部最优,只是这里局部最优要考虑局部最大和局部最小, 因为有负数相乘。

转载于:https://www.cnblogs.com/77rousongpai/p/4538478.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值