三道贪心/数学的题目,代码链接如下:
1.http://codeforces.com/contest/732/submission/21842599
给两个数k, r,求最小正整数x使得 x * k = 10 * y 或者 x*k = 10 * y + r。
(1 ≤ k ≤ 1000, 1 ≤ r ≤ 9, y为任意自然数)
关键在对1-9各数,其自然倍数模10为周期小于11的数列,所以可以打表。
2.http://codeforces.com/contest/732/submission/21843557
给定数列a[0,n]和数字k,求数列b[0,n]和最小的t使得:
b[i]+b[i+] + a[i]+a[i+1] >= k,t = sum(b[i])成立,其中假定a[-1],a[n+1]>=k。
从第二个数扫描即可。
3.http://codeforces.com/contest/732/submission/21844600
三个时间点将一天分为四个时间段,三个时间点分别为:早餐,正餐,晚餐。一个人可能在任意时间段到达和离开,且只有一次先到达后离开。
即某人来了呆了N天吃了M次早餐B次正餐V次晚餐后离开,他有可能错过任意次任意餐ans。
求该人错过的可能最小的餐数。
m,b,v满足max(m,b,v) - min(m,b,v) <= 1.
根据最大值个数和最大值可求ans。