Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3007 Accepted Submission(s): 1310
Problem Description
判断两序列是否为同一二叉搜索树序列
Input
开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束。
接下去一行是一个序列,序列长度小于10,包含(0~9)的数字,没有重复数字,根据这个序列可以构造出一颗二叉搜索树。
接下去的n行有n个序列,每个序列格式跟第一个序列一样,请判断这两个序列是否能组成同一颗二叉搜索树。
Output
如果序列相同则输出YES,否则输出NO
Sample Input
2 567432 543267 576342 0
Sample Output
YES NO
HDU 3791
1.链式建立二叉树;
2.熟悉指针的操作;
3.深入理解二叉树的三种遍历方式,程序中采用了最简单的中序遍历,包括二叉树的递归遍历和非递归遍历;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef struct node
{
node *left,*right;
int value;
}*N;
node *tree1,*tree2;
int n;
char s1[11],s2[11];
void insert_node(node *tree,int t)
{
if(t<tree->value){
if(tree->left==0){
node *n1;
n1=(node *)malloc(sizeof(node ));
n1->left=n1->right=0;
n1->value=t;
tree->left=n1;
tree=n1;
}
else insert_node(tree->left,t);
}
else{
if(tree->right==0){
node *n1;
n1=(node *)malloc(sizeof(node ));
n1->left=n1->right=0;
n1->value=t;
tree->right=n1;
tree=n1;
}
else insert_node(tree->right,t);
}
}
void create_binarytree(node *tree,char s[])
{
int l=strlen(s),t,k=0;
for(int i=1;i<l;i++)
{
t=s[i]-'0';
insert_node(tree,t);
}
}
int sum;
void search_binary(node *n1,int s[])
{
s[sum]=n1->value;
if(n1->left) {
sum++;search_binary(n1->left,s);}
if(n1->right) {
sum++;search_binary(n1->right,s);}
}
int main()
{
memset(s1,0,sizeof(s1));
memset(s2,0,sizeof(s2));
int s3[13],s4[13];
while(1){
scanf("%d",&n);
if(n==0) break;
memset(s3,0,sizeof(s3));
scanf("%s",s1);
tree1=(node *)malloc(sizeof(node ));
tree1->value=s1[0]-'0';
tree1->left=tree1->right=0;
create_binarytree(tree1,s1);
sum=0;
search_binary(tree1,s3);
for(int i=1;i<=n;i++)
{
memset(s4,0,sizeof(s4));
memset(s2,0,sizeof(s2));
scanf("%s",s2);
tree2=(node *)malloc(sizeof(node ));
tree2->value=s2[0]-'0';tree2->right=tree2->left=0;
create_binarytree(tree2,s2);
sum=0;
search_binary(tree2,s4);
bool flag=1;
for(int j=0;j<10;j++)
{
if(s3[j]!=s4[j]) flag=0;
}
if(flag) printf("YES\n");
else printf("NO\n");
}
}
return 0;
}