一、邻接矩阵实现
思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可;
伪代码:
for i=1 to n
for j=1 to n
for k=1 to n
result[i][j]+=matrix[i][k]*matrix[k][j];
算法复杂度
两个n维数组相乘,因此复杂度为O(V^3),当然可以通过Strassen算法稍加改进.
扩展:这种方法的作用是比如求u到v路径长度为k的路径数目,只需要求A^k,然后[u][v]即可。
算法正确性分析
命题:给定两点i,j,i,j路径长度为r的路径数目等于A^r[i][j].
数学归纳法证明,
当n=1时,A[i][j]表示i到j的路径长度为1的路径数目。
假设n=k时,i,j路径长度为k的路径数目等于A^k[i][j]成立,则当n=k+1时,A^k+1 = A^k *A
因此A^k+1[i][j]=A^k[i][1]*A[1][j]+A^k[i][2]*A[2][j]+.....+A^k[i][|V|]*A[|V|][j]
因此成立。
输入:
4 3
a b
b c
c d
源代码:
package C22;
public class C1_5 {
public static void main(String[] args) throws Exception {
Adjacent_Matrix adj_matrix = GraphFactory.getAdjacentMatrixInstance("input\\22.1-5.txt");
int[][]result = getSquareGraph(adj_matrix);
print(result);
}
public static int[][] getSquareGraph(Adjacent_Matrix g){
int[][] matrix = g.getMatrix();
int result[][] = new int[matrix.length][matrix.length];
for(int i=0;i<matrix.length;i++){
for(int j=0;j<matrix.length;j++){
for(int k=0;k<matrix.length;k++){
result[i][j] += matrix[i][k]*matrix[k][j];
}
}
}
return result;
}
public static void print(int[][] arr){
for(int i=0;i<arr.length;i++){
for(int j=0;j<arr.length;j++)
System.out.print(arr[i][j]+" ");
System.out.println();
}
System.out.println();
}
}
二、邻接表实现
伪代码:
for u=1 to |V|
for each v 属于 Adj[u]
Adj1[u].insertAll(Adj[v]);
对G'去除重边; //O(E^2)
复杂度:
1~3行的复杂度为O(V+E)
4行的复杂度为O(E^2),因为最多能够生成O(E^2)条边。